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Stratigraphy of the Eocene–Oligocene Titus Canyon Formation, 
Death Valley, California (USA), and Eocene extensional tectonism in 
the Basin and Range
Nikolas Midttun, Nathan A. Niemi, and Bianca Gallina
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA

ABSTRACT

Geologic mapping, measured sections, and geochronologic data elucidate the tectono- stratigraphic 
development of the Titus Canyon extensional basin in Death Valley, California (USA), and provide new 
constraints on the age of the Titus Canyon Formation, one of the earliest syn- extensional deposits in 
the central Basin and Range. Detrital zircon maximum depositional ages (MDAs) and compiled 40Ar/39Ar 
ages indicate that the Titus Canyon Formation spans 40(?)–30 Ma, consistent with an inferred Duch-
esnean age for a unique assemblage of mammalian fossils in the lower part of the formation. The Titus 
Canyon Forma tion preserves a shift in depositional environment from fluvial to lacustrine at ca. 35 Ma, 
which along with a change in detrital zircon provenance may reflect both the onset of local extensional 
tectonism and climatic changes at the Eocene–Oligocene boundary. Our data establish the Titus Canyon 
basin as the southernmost basin in a system of late Eocene extensional basins that formed along the 
axis of the Sevier orogenic belt. The distribution of lacustrine deposits in these Eocene basins defines 
the extent of a low- relief orogenic plateau (Nevadaplano) that occupied eastern Nevada at least through 
Eocene time. As such, the age and character of Titus Canyon Formation implies that the Nevadaplano 
may have extended into the central Basin and Range, ~200 km farther south than previously recognized. 
Development of the Titus Canyon extensional basin precedes local Farallon slab removal by ~20 m.y., 
implying that other mechanisms, such as plate boundary stress changes due to decreased convergence 
rates in Eocene time, are a more likely trigger for early extension in the central Basin and Range.

 ■ INTRODUCTION

During the Cenozoic, the Basin and Range 
extensional province of western North America 
(Fig. 1) underwent distributed continental exten-
sion driven by a combination of external stresses 
(i.e., changing plate boundary stresses) and internal 
stresses (i.e., topographically induced gravitational 
potential energy gradients and buoyancy forces) 
(e.g., Sonder and Jones, 1999). Our ability to sep-
arate the relative influence of these geodynamic 
drivers relies on estimates of the initial state of 
topography and lithospheric structure prior to 

extension (e.g., Jones et al., 1996; Molnar et al., 
2015; Levandowski et al., 2017; Ghosh et al., 2019; 
Zhou and Liu, 2019; Lund Snee and Zoback, 2020). 
Internal stresses are thought to have been a major 
driver of pre- Miocene extension in the Basin and 
Range, when significant gravitational potential 
energy gradients may have existed along the 
margins of the Nevadaplano, an inferred region 
of over- thickened crust constructed across west-
ern North America during the Cretaceous Sevier 
orogeny. External stress changes caused by plate 
boundary reorganization may also have played a 
role in continuing extension after initial orogenic 
collapse. Separating the roles of external stress 
changes and internal driving stresses on extension 

in the Basin and Range depends on knowing the 
location and rate of extension across the Basin and 
Range throughout the Cenozoic.

Early extension in the Basin and Range is thought 
to have started with a Cretaceous and Paleogene 
phase of relatively small magnitude syn- convergent 
upper- crustal extension, followed by a later phase 
of larger- magnitude extensional collapse (Dickinson, 
2002). Late Cretaceous and early Paleogene low- 
magnitude, syn- convergent extension is primarily 
inferred from a sparse stratigraphic record (e.g., Potter 
et al., 1995; Dubiel et al., 1996; Druschke et al., 2009; 
Lund Snee et al., 2016), and to a lesser degree from 
thermochronologic and geochronologic evidence 
(e.g., Wells et al., 1990; Applegate and Hodges, 1995; 
Camilleri and Chamberlain, 1997; Sullivan and Snoke, 
2007). The record of Eocene to Miocene extension 
is both more widespread and indicative of larger 
magnitude extension that likely resulted in signifi-
cant crustal thinning and topographic collapse, as 
recorded in thermochronologic data from metamor-
phic core complexes (e.g., Holm and Dokka, 1991; 
Lee, 1995; Foster and Raza, 2002; Vogl et al., 2012; 
Evans et al., 2015; Lee et al., 2017) and stratigraphic 
sequences deposited in hanging- wall sedimentary 
basins (Satarugsa and Johnson, 2000; Wagner and 
Johnson, 2006; Smith et al., 2017; Canada et al., 2020).

The importance of internal stresses in local-
izing early extension in the Basin and Range is 
reasoned from the narrow north- south–oriented 
belt of Cordilleran metamorphic core complexes 
that lie to the west of the Sevier fold- thrust belt 
(Fig. 1; e.g., Coney and Harms, 1984). Localization 
of extension along this north- south belt is inferred 
to have been driven by enhanced topographic and 
buoyancy stresses in a continental lithosphere that 
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was over- thickened by late Cretaceous shortening 
during the Sevier orogeny (Coney and Harms, 1984; 
Sonder et al., 1987; Jones et al., 1998). The pres-
ence of thickened crust in the Cordillera prior to 
extension is supported by multiple lines of evi-
dence, including palinspastic reconstructions of 
extension (e.g., Coney and Harms, 1984; Bahadori 
et al., 2018), stable isotope proxy estimates of pale-
otopography (e.g., Chamberlain et al., 2012; Lechler 
et al., 2013; Cassel et al., 2014; Snell et al., 2014), 
and petrologic estimates of crustal thickness (Best 
et al., 2009; Chapman et al., 2015).

Despite compelling evidence of crustal thicken-
ing in the Sevier hinterland, the lag between the 
attainment of maximum crustal thickness and sub-
sequent extensional collapse and crustal thinning 
(ca. 60 Ma; Chapman et al., 2015) suggests that 
the onset of extension may also require an exter-
nal forcing. Two main mechanisms are proposed 
to have initiated early Basin and Range extension: 
the first is the time- transgressive, north- south 
removal of the Farallon slab and subsequent heat-
ing and weakening of the over- thickened crust 
(e.g., McQuarrie and Oskin, 2010); the second is a 

reduction in plate convergence rates resulting in 
plate boundary stress changes (e.g., Schellart et al., 
2010). A particular challenge in disentangling the 
roles of these two external drivers is that a wealth 
of information regarding early Basin and Range 
extension is derived from studies in the northern 
Basin and Range (e.g., Potter et al., 1995; Druschke 
et al., 2009; Cassel et al., 2014; Lund Snee et al., 
2016; Smith et al., 2017; Cassel et al., 2018; Long, 
2018; Canada et al., 2019; Canada et al., 2020), where 
Eocene removal of the Farallon slab is contempora-
neous with the ca. 40 Ma change in the rate of plate 
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Figure 1. Shaded elevation maps of western North America and the Grapevine and Funeral Mountains of northern Death Valley. Elevation data are from the 
National Oceanic and Atmospheric Administration’s Earth TOPOgraphy dataset (ETOPO) and the Shuttle Radar Topography Mission (SRTM). Panel A: Shaded 
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convergence and initiation of trench retreat along 
the plate boundary (Jurdy, 1984; Humphreys, 1995; 
McQuarrie and Oskin, 2010; Schellart et al., 2010). 
Farther south, in the central Basin and Range, Far-
allon slab removal occurred in the middle Miocene, 
at ca. 15 Ma, significantly later than the Eocene 
reduction in plate convergence, thus presenting a 
potential opportunity to examine the extensional 
response of the Basin and Range to slab removal 
and plate boundary reorganization separately. To 
leverage such an opportunity, however, requires 
the preservation of thermochronologic or strati-
graphic evidence of Eocene extensional tectonism.

The Titus Canyon Formation, in eastern Death 
Valley (Fig. 1), is recognized as one of the earliest 
syn- extensional basin deposits in the central Basin 
and Range (Reynolds, 1969; Saylor, 1991; Snow and 
Lux, 1999; Fridrich and Thompson, 2011; Niemi, 
2012). Previous detailed studies of the Titus Can-
yon Formation primarily focused on mapping its 
extent (Reynolds, 1969; Niemi, 2012) and describing 
its lithostratigraphy (Stock and Bode, 1935; Say-
lor, 1991; Gutenkunst, 2006), collectively providing 
limited geochronology and biostratigraphy to con-
strain the depositional age of the formation and 
thus the evolution of the Titus Canyon basin. We 
present ten new measured sections (Plate 1) and a 
detailed geologic map (Plate 2) of the Titus Canyon 
Formation in eastern Death Valley National Park. 
The stratigraphic sections and geologic mapping 
are accompanied by newly determined strati-
graphic positions of paleontologic sites, detrital 
zircon U-Pb analyses used to inform both basin 
provenance and provide maximum depositional 
age (MDA) constraints, and compiled and re- 
calculated 40Ar/39Ar geochronologic age data. We 
develop both an age model for the Titus Canyon 
Formation and a basin evolution model for the Titus 
Canyon basin in response to tectonic drivers. These 
models yield revisions to both the internal stra-
tigraphy and stratigraphic continuity of the Titus 
Canyon Formation, as well as a reassessment of 
regional correlations of early Cenozoic stratigraphy 
in the Death Valley region. The age model and basin 
evolution model are considered in the context of 
Farallon slab removal and Eocene plate boundary 
reorganization to connect the development of the 

Titus Canyon basin to the initiation of extension 
across the entire Basin and Range province.

 ■ PALEOGENE STRATIGRAPHY OF 
THE DEATH VALLEY REGION—
CORRELATIONS AND CONTROVERSIES

Paleogene strata in northern Death Valley that 
may record the earliest phases of extensional 
tectonism in the western Basin and Range are 
thin, discontinuous, and difficult to date. These 
challenges have inhibited the development of 
lithostratigraphic and chronostratigraphic mod-
els of these strata, resulting in a lack of consensus 
around regional correlation and temporal range of 
Paleogene rocks (Fig. 2; e.g., Snow and Lux, 1999; 
Fridrich and Thompson, 2011). We outline below 
several of the controversies surrounding these 
strata to illustrate the challenges associated with 
correlating strata across the highly extended Death 
Valley region.

Cenozoic strata in the Death Valley region 
were deposited in rapidly evolving extensional 
basins, resulting in significant lateral variability, 
time- transgressive deposition, and complex inter-
play between deposition and active faulting (e.g., 
Çemen et al., 1999; Snow and Lux, 1999; Snyder and 
Hodges, 2000; Niemi, 2002; Fridrich and Thompson, 
2011). Early efforts to map and define stratigraphic 
units within Death Valley were restricted to isolated 
study areas, resulting in nomenclature that var-
ied from mountain range to mountain range for 
units that may in fact be lithologically or tempo-
rally correlative. Snow and Lux (1999) presented 
a tectono- stratigraphic framework that coherently 
placed these individual formations into allostrati-
graphic packages that they correlated across the 
entire Death Valley region, and in doing so defined 
three distinct episodes of basin development (Fig. 2). 
They termed these three phases the pre- extensional, 
syn- extensional, and post- extensional basin devel-
opment stages, and although the phases are 
time- transgressive across the Death Valley region, 
the phases are identified by the development of 
regional unconformities, variations in depositional 
rates and styles, and variations in volcanic input. 

This tectono- stratigraphic framework was further 
expanded by Fridrich and Thompson (2011), who 
correlated seven tectono- stratigraphic assem-
blages across the Death Valley region (five of these 
seven assemblages that are geographically rele-
vant to northern Death Valley are shown on Fig. 2). 
The oldest tectono- stratigraphic package, referred 
to as the Titus Canyon Assemblage (Fridrich and 
Thompson, 2011) or the Grapevine Sequence (Snow 
and Lux, 1999), contains two early- extensional units, 
the Titus Canyon Formation and the Ubehebe 
Formation; however, the depositional age, forma-
tional boundaries, and stratigraphic relationships 
between these two units remain unresolved (cf. 
Snow and Lux, 1999; Fridrich and Thompson, 2011).

Previous Work Describing the Titus Canyon 
Formation

The Titus Canyon Formation was first defined by 
Stock and Bode (1935), who were excavating fossil 
land mammal remains in the southern Grapevine 
Mountains (Fig. 1), including a Titanothere skull 
(Stock, 1936). Stock and Bode performed prelimi-
nary stratigraphic measurements and descriptions 
of the fossiliferous beds and defined the Titus Can-
yon Formation as an ~1000- m- thick sequence of 
brightly colored conglomerates, sandstones, lime-
stones, and tuffs, but they did not provide detailed 
mapping of the areal extent of the unit or of its 
relationship to adjacent geologic units. The Titus 
Canyon Formation was originally assigned an Oli-
gocene age based on the mammalian fossils found 
within it (Stock and Bode, 1935; Mason, 1988). Reyn-
olds (1969) significantly refined the stratigraphy of 
the Titus Canyon Formation with the detailed geo-
logic mapping in Titanothere and Titus canyons 
(Fig. 3) and also defined a type section for the for-
mation in upper Titus Canyon (Fig. 3). Reynolds 
(1969) internally divided the Titus Canyon Forma-
tion into four units, from stratigraphically lowest 
to highest: (1) the sedimentary breccia facies; 
(2) the variegated facies; (3) the brown conglom-
erate facies; and (4) the green conglomerate facies, 
and provided an interpretation of the Titus Canyon 
basin as an extensional basin.
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Plate 1. Ten correlated graphical measured 
sections of the Titus Canyon Formation. 
Plate should be viewed at 24 inches wide 
by 36 inches tall. To view Plate 1 at full size, 
please visit https://doi.org /10.1130 /GEOS .S 
.21291084.
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Plate 2. Geologic map of the southern 
Grape vine Mountains and northern Funeral 
Mountains, with an emphasis on Cenozoic 
stratigraphy. Plate is intended to be viewed 
at 50 inches wide and 40 inches tall. To view 
Plate 2 at full size, please visit https://doi .org 
/10.1130 /GEOS .S .21291084. Geologic map 
database can be interactively viewed and 
downloaded at https://arcg.is/1rriKn.
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Nikolas Midttun, Nathan A. Niemi, Bianca Gallina
Death Valley, California

Cenozoic Rocks of the Southern Grapevine and Northern Funeral Mountains
Plate 2:
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Quaternary Landslide Deposit (Holocene) - Landslide debris including semi-coherent blocks of 
bedrock that have moved downslope

Quaternary Rock Veneer (Holocene) - Thin deposits of monolithologic regolith blanketing low 
gradient slopes

Quaternary Talus (Holocene) - Angular cliff fragments resulting from rock fall collected at the base 
of steep slopes

Quaternary Alluvium (Holocene) - Unlithified sediment in active channels; grain size ranges from 
sand to boulder

Quaternary Old Alluvium (Holocene and Pleistocene) - Weakly lithified sands and cobbles in 
elevated terraces

Tertiary Undifferentiated (Miocene) - Tertiary sedimentary and volcanic deposits, 
undifferentiated

Tertiary Tuff Undifferentiated (Miocene) - Tertiary volcanic deposits, undifferentiated 

Donovan Mountain Latite (Miocene) - Dark gray and reddish brown welded and unwelded tuff 
with minor breccia intervals

Timber Mountain Group (Miocene) - Brown, pale red, and light gray partially welded to densley 
welded tuffs

Paintbrush Group (Miocene) - Crystal-poor gray to reddish brown welded and unwelded tuff

Crater Flat Group (Miocene) - Red pumiceous tuff and white tuffaceous siltstone to pinkish gray 
welded tuff

Lithic Ridge Tuff (Miocene) - Non-welded ash flow tuff weathering bluish and pinkish gray

Wahguyhe Formation (Miocene) - White to pale yellow shales, sandstones, conglomerates, and 
highly altered tuffs

Panuga Formation (Miocene) - Thick green conglomerates interbedded with coarse sandstone, 
contains three distinctive crystaline tuffs including the Panuga Middle Tuff. 40Ar/39Ar age: 
15.7±0.2 Ma (sanidine).

Rocks of Porter Mine (Miocene and Oligocene) - Bluish gray and greenish gray tuffaceous 
conglomerate, sandstone, and mudstone. May correlate with the Ubehebe Formation. 40Ar/39Ar 
ages: 19.3±0.5 Ma (biotite), 23.6±0.1 Ma (sanidine), 28.2±0.2 Ma (biotite).

Titus Canyon Formation (Oligocene and Eocene) - Brightly colored red siltstones, green-gray 
conglomerates, purple sandstones, and yellow limestones.

Variegated member - Interbedded greenish and yellowish gray conglomerates, red siltstone, 
and yellow-gray limestones forming low rounded hills. Includes three marker units, the Unit 38 
(u38) and Unit 8 (u8) tuffs, and the middle green sandstone (mg), a massive gray-green 
sandstone exhibiting distinctive spheroidal weathering. 40Ar/39Ar ages: 30.2±0.6 Ma (u38, 
biotite), 34.5±0.4 Ma (u8, biotite).

Redbed member - Predominantly recessive brick red calcareous siltstone interfingered with 
grayish purple cross-bedded sandstone and conglomerate

Basal Breccia member - Massive to weakly stratified matrix-supported breccia and 
conglomerate with a wide range of clast sizes ranging from 1 cm pebbles to boulders 2 meters 
in diameter. Clasts are primarily composed of Paleozoic limestone, quartzite, and chert

Bonanza King Formation (Cambrian) - Light to dark gray banded dolostone

Carrara Formatino (Cambrian) - Green-gray siltstone interbedded with calcareous sandstones and 
limestones including bioclastic debris

Zabriskie Quartzite Formation (Cambrian) - Purplish red to grayish pink massively bedded 
quartzite with well rounded grains

Wood Canyon Formation (Cambrian and Neoproterozoic) - Interbedded greenish gray siltstone 
and quartzite, light gray dolostone, and limestone

Stirling Quartzite Formation (Neoproterozoic) - Greenish gray siltstone, fine pink and yellow 
quartzite, laminated dolostone and limestone

Johnnie Formation (Neoproterozoic) - Brown to purple shale, interbedded dolomite and quartzite 
with pebble conglomerate
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Contact - Solid where confident, dashed where inferred

45

Fault (unknown sense of slip) - Solid where confident, dotted 
where concealed, dashed where inferred  

Strike and dip of inclined bedding  
This study. 

Strike and dip of inclined bedding  
Unpublished data from C. Fridrich. 

Strike of vertical bedding    
This study. 

Strike of bedding   
This study. 

Strike and dip of overturned bedding   
This study.  

45

Shallowly dipping normal fault - Teeth on hanging wall. Solid 
where confident, dotted where concealed, dashed where inferred  

Horizontal bedding    
This study.  
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15.7±0.2 Geochronologic age determination   
Various studies and methods, see Table 1.  
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Nevada
California Plate 2: Geologic map of  the southern Grapevine Mountains and northern Funeral Mountains, 

with an emphasis on Cenozoic stratigraphy. Fieldwork was completed in 2019. The geology was 
mapped through a combination of  traditional field mapping, remote mapping of  contacts onto 
high-resolution aerial imagery, and compilation of  previous mapping (see Index of  Sources on 
plate). Geologic map data are available in geodatabase format in the Supplemental Material. Note 
that the plate is intended to be viewed at 50 inches wide and 40 inches tall. 
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View to the NW from 36.8579º N, 117.0667º W

Outcrop Image

Image: View towards the NW in the west fork of  Titus Canyon (location on map to the left), the 
location of  some of  the best exposures  of  the Redbed (@#tr) and Variegated (@#tv) members of  the 
Titus Canyon Formation, the Panuga Formation (!pc), Waguyhe Formation (!w), and 
undifferentiated Miocene tuff  (!tu). Thick black lines are faults and thin black lines are unit 
contacts. 

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/19/1/258/5852414/ges02556.1.pdf
by Charles Watson
on 13 December 2023

http://geosphere.gsapubs.org
https://doi.org/10.1130/GEOS.S.21291084
https://doi.org/10.1130/GEOS.S.21291084
https://arcg.is/1rriKn


263Midttun et al. | Stratigraphy of the Eocene–Oligocene Titus Canyon FormationGEOSPHERE | Volume 19 | Number 1

Research Paper

Controversies on the Age and Definition of 
the Titus Canyon Formation

The stratigraphic definition of the Titus Canyon 
Formation by Reynolds (1969) was revisited with 
the expanded availability of geochronologic age 
control (Snow and Lux, 1999). In particular, 40Ar/39Ar 
ages bracketing an angular unconformity between 
the green conglomerate facies and the underly-
ing variegated facies revealed a 15 m.y. hiatus in 

deposition, with an Oligocene depositional age for 
the variegated facies and a middle Miocene age for 
the green conglomerate facies (Saylor and Hodges, 
1994; Snow and Lux, 1999). This discovery led to a 
revised stratigraphic definition of the Titus Canyon 
Formation that reassigned the green conglomerate 
facies to the Miocene Panuga Formation (Snow and 
Lux, 1999).

Geochronologic analyses throughout the Death 
Valley region led to the revised definition and 

regional correlation of multiple other early Cenozoic 
deposits. Early Cenozoic sedimentary strata from 
Bat Mountain (Fig. 1), in the southern Funeral Moun-
tains (Fig. 1; McAllister, 1971; Çemen et al., 1982, 
1985; Çemen and Wright, 1990) and the Cotton wood 
Mountains (Fig. 1; McAllister, 1952; Snow, 1990; 
Snow and White, 1990; Snow, 1993) were demon-
strated to share latest Oligocene to early Miocene 
depositional ages, on the basis of intercalated tuffs 
(Çemen et al., 1999; Snow and Lux, 1999). These 
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strata were defined as the Ubehebe Formation and 
consist of a fining- upwards sequence of conglom-
erates, sandstones, marls, and tuffs exposed in 
the Cottonwood and southern Funeral Mountains 
(Fig. 1; Çemen et al., 1982; Çemen et al., 1999; Snow 
and Lux, 1999). In both the Cottonwood Mountains 
and the Funeral Mountains (Fig. 1), the Ubehebe 
Formation is deposited directly on the sub- Tertiary 
unconformity (i.e., the regional unconformity across 
the Basin and Range defined by the deposition of 
Cenozoic strata on deformed Paleozoic or Meso-
zoic strata), and it is separated by a distinct angular 
unconformity from the overlying Panuga Formation 
(Snow and Lux, 1999).

In the southern Grapevine Mountains (Fig. 1), 
where the Titus Canyon Formation is defined, no 
strata demonstrably equivalent in age to the 
Ubehebe Formation have been previously recog-
nized (Reynolds, 1969; Niemi, 2012). Snow and Lux 

(1999) considered the possibility that the Titus Can-
yon Formation might be an older, time- transgressive 
equivalent to the Ubehebe Formation, since 
Ubehebe Formation strata were not definitively 
observed stratigraphically above the Titus Canyon 
Formation anywhere, and the two units share some 
lithologic similarities. They concluded, however, that 
the Titus Canyon Formation is most likely distinct in 
age from, and thus not correlative with, the Ubehebe 
Formation. This conclusion hinged on reports that 
the Titus Canyon Formation is overlain by 20–24 Ma 
strata, equivalent in age to the Ubehebe Formation, 
at two isolated and relatively small, exposures 
(Reynolds, 1974; Wright and Troxel, 1993).

Strata broadly similar in lithology to the Titus 
Canyon and Ubehebe Formations have subse-
quently been reported along the eastern flank of 
Funeral Mountains (Fig. 1; Murray, 2002; Guten-
kunst, 2006; Ridgway et al., 2011). Sections along 

the eastern Funeral Mountains were correlated by 
Gutenkunst (2006) to the Titus Canyon Formation on 
the basis of their similar lithofacies. However, geo-
chronologic analyses from these sections ranged 
from latest Oligocene to early Miocene (Gutenkunst, 
2006), which would suggest temporal equivalence 
to the Ubehebe Formation, not the Titus Canyon 
Formation. The continuum of exposures of early 
Cenozoic strata from the Grapevine Mountains 
southward along the eastern margin of the Funeral 
Mountains to Bat Mountain, at the southern end 
of the Funeral Mountains (Fig. 1), led Fridrich and 
Thompson (2011) to challenge the distinction of 
Snow and Lux (1999) and to propose that the Titus 
Canyon and Ubehebe Formations reflect a single, 
time- transgressive continuum of deposition. Sup-
port for this interpretation, in part, arises from a lack 
of definitive absolute age control that differentiates 
the depositional age of the Titus Canyon Formation 
from the Ubehebe Formation.

Resolving the Early Extensional and Basin 
Development History of the Death Valley 
Region

The challenge of resolving and understanding 
the early extensional history of the Death Valley 
region arises from two specific issues. First is the 
lack of absolute age control on the deposition of 
the Titus Canyon Formation, as discussed above. 
The age of the Titus Canyon Formation is primarily 
derived from paleontologic evidence and has been 
reported as Eocene to Oligocene (Stock and Bode, 
1935; Mason, 1988; Lander, 2019), presenting diffi-
culties in comparing the age of the Titus Canyon 
Formation to other lithologic units. The second issue 
is a lack of detailed mapping of the extent, conti-
nuity, and regional correlation of the Titus Canyon 
Formation, which had the added effect of prevent-
ing extrapolation of the limited biostratigraphic and 
geochronologic age constraints that do exist for the 
formation. Geologic maps at 1:48,000 scale in the 
Grapevine and Funeral Mountains (Cornwall and 
Kleinhampl, 1964; Wright and Troxel, 1993; Niemi, 
2012) expanded the recognized areal extent of the 
Titus Canyon Formation beyond Titus Canyon to a 
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northwest- southeast strip along the eastern Grape-
vine and Funeral Mountains (Fig. 3). However, these 
maps omit the internal stratigraphy of the Titus Can-
yon Formation as defined by Reynolds (1969), and, 
in areas particularly relevant to discriminating the 
Titus Canyon and Ubehebe Formations, pre- date the 
recognition of these two formations (e.g., Cornwall 
and Kleinhampl, 1964; Wright and Troxel, 1993).

Below, we present detailed measured sections 
(Plate 1) and geologic mapping (Plate 2) in the south-
ern Grapevine Mountains and northern and central 

Funeral Mountains (Fig. 1) that inform the above- 
described controversies. The internal stratigraphy of 
the Titus Canyon Formation is mapped throughout 
the study region, with recognition of the possibility 
that the Ubehebe Formation can be differentiated 
from the Titus Canyon Formation. Robust geochro-
nologic age constraints (Table 1) are provided for 
the type section of the Titus Canyon Formation and 
are integrated with previously unpublished age con-
straints from other sections to develop a coherent 
early Cenozoic chronostratigraphy for eastern Death 

Valley and resolve the age, stratigraphic definition of, 
and regional tectonic significance of, the Titus Can-
yon Formation.

 ■ METHODS

To refine the internal stratigraphy and deter-
mine an age model for the Titus Canyon Formation, 
we measured stratigraphic sections, undertook 
large- scale field mapping, and completed zircon 

TABLE 1. SUMMARY OF GEOCHRONOLOGY SAMPLES

Sample Latitude
(ºN)

Longitude
(ºW)

Age
(Ma)

Age error Age method Grains Source Analytical data Location 
certainty

 Stratigraphic position

Unit 38 Tuff 36.84675 117.04754 30.6 ± 0.3 ± 1σ U/Pb zircon MDA 106 This study Table S1 GPS Unit 38 Tuff, Variegated member, Titus Canyon Formation
TC‑ 09‑ 04 36.84037 117.04137 31.5 ± 0.8 ± 1σ U/Pb zircon MDA 87 This study Table S1 GPS Variegated member, Titus Canyon Formation
TC19‑ 9 36.84424 117.05414 33.4 ± 0.2 ± 1σ U/Pb zircon MDA 105 This study Table S1 GPS Unit 8 Tuff, Variegated member, Titus Canyon Formation
TC19‑ 2 36.82998 117.01923 36.0 ± 0.2 ± 1σ U/Pb zircon MDA 105 This study Table S1 GPS Variegated member, Titus Canyon Formation
TC19‑ 5 36.83873 117.03860 N.D.** N.A. U/Pb zircon 110 This study Table S1 GPS Redbed member, Titus Canyon Formation
TC19‑ 01NN 36.85915 117.09045 N.D.** N.A. U/Pb zircon 103 This study Table S1 GPS Redbed member, Titus Canyon Formation
TC19‑ 02NN 36.86059 117.08305 N.D.** N.A. U/Pb zircon 110 This study Table S1 GPS Redbed member, Titus Canyon Formation

17TCTF04 36.86301 117.06580 28.9 ± 1.0 ± 1 S.E. (U‑Th)/He zircon 3 This study Table S2 GPS Unit 38 Tuff, Variegated member, Titus Canyon Formation
17TCTF01 36.83907 117.03937 15.2 ± 1.4# ± 1 S.E. (U‑Th)/He zircon 3 This study Table S2 GPS Unit 8 Tuff, Variegated member, Titus Canyon Formation
17TCTF03 36.85942 117.06672 25.7 ± 4.0# ± 1 S.E. (U‑Th)/He zircon 3 This study Table S2 GPS Unit 8 Tuff, Variegated member, Titus Canyon Formation
17CH03 36.73715 116.85796 24.4 ± 2.1 ± 1 S.E. (U‑Th)/He zircon 3 This study Table S2 GPS Rocks of Porter Mine (Ubehebe Formation)

FM‑ 2_16.5 Biotite2 36.69517 116.79875 19.3 ± 0.5 ± 1σ Ar/Ar biotite N.A. Murray (2002), Gutenkunst (2006) Table S3, Fig. S1 Estimated* Rocks of Porter Mine (Ubehebe Formation)
FM‑ 3_102.5 Sanidine1 36.69304 116.79596 23.6 ± 0.1 ± 1σ Ar/Ar sanidine N.A. Murray (2002), Gutenkunst (2006) Table S3, Fig. S1 Estimated* Rocks of Porter Mine (Ubehebe Formation)
FM‑ 3_2.1 Biotite1 36.69159 116.79298 28.2 ± 0.2 ± 1σ Ar/Ar biotite N.A. Murray (2002), Gutenkunst (2006) Table S3, Fig. S1 Estimated* Rocks of Porter Mine (Ubehebe Formation)

TC‑ 4 N.L. N.L. 30.2 ± 0.6 ± 1σ Ar/Ar biotite N.A. Saylor and Hodges (1994) N.A.†† N.L. Unit 38 Tuff, Variegated member, Titus Canyon Formation
T1 N.L. N.L. 34.5 ± 0.4 ± 1σ Ar/Ar biotite N.A. Saylor and Hodges (1994) N.A.†† N.L. Unit 8 Tuff, Variegated member, Titus Canyon Formation

592‑ GV1 K1 36.8650 117.0778 15.7 ± 0.2 ± 1σ Ar/Ar sanidine N.A. Snow and Lux (1999) Table S3 Estimated§ Panuga Formation

ELM18DVTC‑ 1 36.843966 117.05466 36.3 N.D. U/Pb zircon MDA 113 Miller et al. (2022) Miller et al. (2022) N.A. Titus Canyon Formation
ELM18DVTC‑ 2 36.844193 117.05427 33.0 N.D. U/Pb zircon MDA 100 Miller et al. (2022) Miller et al. (2022) N.A. Titus Canyon Formation
ELM18DVTC‑ 6 36.84493 117.05031 32.3 N.D. U/Pb zircon MDA 84 Miller et al. (2022) Miller et al. (2022) N.A. Titus Canyon Formation
ELM18DVTC‑ 7 36.844348 117.04692 23.7 N.D. U/Pb zircon MDA 116 Miller et al. (2022) Miller et al. (2022) N.A. Titus Canyon Formation
ELM15MC‑ 11 36.739036 116.90889 36.0 N.D. U/Pb zircon MDA 64 Miller et al. (2022) Miller et al. (2022) N.A. Titus Canyon Formation
ELM15MC‑ 12 36.741279 116.90561 34 N.D. U/Pb zircon MDA 90 Miller et al. (2022) Miller et al. (2022) N.A. Titus Canyon Formation

*Location uncertainty 200 meters. Position of sample within a measured stratigraphic section is known, but location of measured section is uncertain.
§Sample coordinates reported in Snow and Lux (1999) are incorrect. Coordinates given here are estimated from bearing, distance, and stratigraphic position described in Snow and Lux (1999).
#Age inconsistent with stratigraphic constraints.
**No Cenozoic zircons for maximum depositional age (MDA).
††Original complete analytical data no longer available (K. Hodges, personal commun., 2020).
N.D.—not determined. N.A.—not applicable. N.L.—no sample location given in Saylor and Hodges (1994). S.E.—standard error.
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U-Pb geochronology. These efforts resulted in ten 
detailed measured stratigraphic sections (Plate 1), a 
1:24,000 scale geologic map (Plate 2), and maximum 
depositional ages (MDAs) for the Titus Canyon For-
mation. These data were correlated with published 
and unpublished 40Ar/39Ar age determinations to 
develop a new basin evolution and regional strati-
graphic model for the early- extensional sequences 
in Death Valley.

Geologic Mapping and Measured Sections

Geologic mapping included field and remote 
components. Fieldwork was conducted over two 
field seasons in 2019. We measured and described 
the internal stratigraphy of the Titus Canyon Forma-
tion using a Jacob’s staff at ten locations, comprising 
a total of 2600 m of strata. During geologic map-
ping in the field, the locations of faults and contacts 
were recorded directly onto high- resolution, ortho- 
rectified aerial imagery using a GPS- enabled tablet 
running Esri Collector for ArcGIS. Field mapping was 
principally focused on detailed analysis of Eocene 
to early Miocene stratigraphic units, with older and 
younger units mapped remotely (see index map on 
Plate 2). The locations and contacts of Proterozoic 
and Paleozoic units were principally derived from 
previous 1:48,000 and 1:100,000 geologic maps 
(Cornwall and Kleinhampl, 1964; Reynolds, 1969; 
Wright and Troxel, 1993; Carr et al., 1996; Niemi, 
2012). Geologic contacts on those maps, which were 
originally on topographic base maps, were digitally 
refined to 1:24,000 scale by tracing color changes 
visible on high- resolution aerial imagery. In addi-
tion to ground truthing, some contacts between 
early Cenozoic sedimentary strata (including the 
Titus Canyon Formation) and overlying Miocene 
units were mapped by referencing the geologic 
mapping of Niemi (2012) and unpublished map-
ping by C. Fridrich (1999, personal commun.) and 
tracing contacts onto high- resolution aerial imag-
ery. All field and remote mapping was compiled 
on a 1:24,000 U.S. Geological Survey topographic 
map base composed of digital line graphs (DLGs; 
1980–1990 vintage), which were simplified for visual 
clarity (Plate 2).

We precisely located Caltech and the Los 
Angeles County Museum paleontological locali-
ties excavated in the 1930s (Stock and Bode, 1935; 
Mason, 1988; Lander, 2019) by visually matching 
distinctive outcrops visible in original glass slide 
images of excavations to their modern exposures. 
We have purposefully obfuscated the exact geo-
graphic locations of fossil localities to protect the 
sites, although the stratigraphic position of such 
sites in reported measured sections (Plate 1) is rep-
resentative of their observed positions within the 
Titus Canyon Formation.

Geochronology

New geochronologic analyses were undertaken 
by multiple methods; these new data were com-
bined with previously unpublished 40Ar/39Ar ages to 
obtain an age model for deposition of the Titus Can-
yon Formation. All ages are summarized in Table 1.

Detrital Zircon U-Pb Geochronology

Seven samples of tuffs and tuffaceous sand-
stones were collected from a range of stratigraphic 
levels within the Titus Canyon Formation for geo-
chronologic analysis (Fig. 4 and Table 1). Selected 
samples appeared tuffaceous as assessed in the 
field with a hand lens. Zircon separates were pro-
duced at the University of Michigan following 
standard mineral separation techniques for rock 
crushing, sieving, and heavy liquids separation. 
U-Pb geochronology on detrital zircons (analyti-
cal data are available in Table S11) was performed 
using laser ablation–inductively coupled plasma 
mass spectrometry (LA-ICPMS) at the University of 
Arizona LaserChron Center following the analytical 
methods of Gehrels et al. (2008).

1 Supplemental Material. Table S1: Analytical data for Titus Can-
yon detrital zircon U-Pb analyses. Table S2: Analytical data for 
Titus Canyon zircon (U-Th)/He analyses. Table S3: Analytical data 
for 40Ar/39Ar ages of Gutenkunst (2006). Figure S1: Recalculated 
40Ar/39Ar analytical plots for data originally from Gutenkunst 
(2006). Please visit https://doi.org/10.1130/GEOS.S.21291075 
to access the supplemental material, and contact editing@
geosociety.org with any questions.

Maximum Depositional Age Analysis from 
U-Pb Detrital Zircon Geochronology

Maximum depositional ages were calculated 
from the zircon U-Pb ages for detrital zircon samples 
that contained Cenozoic zircons (four out of seven 
samples). There are a variety of published methods 
for MDA determination (e.g., Dickinson and Gehrels, 
2009; Coutts et al., 2019), many of which are recog-
nized to bias MDA estimates to young values when 
seeking the youngest zircon age or population (e.g., 
Coutts et al., 2019; Vermeesch, 2021). We present 
MDAs based on the Maximum Likelihood Age (MLA) 
algorithm, which is designed to minimize MDA 
bias (Galbraith and Laslett, 1993; Vermeesch, 2021). 
Application of the MLA method (Fig. 5) yielded con-
sistent age determinations for a single tuffaceous 
unit dated by U-Pb detrital zircon MDA, 40Ar/39Ar, and 
zircon (U-Th)/He methods (Unit 38 tuff; Table 1), and 
consistent U-Pb detrital zircon MDA and 40Ar/39Ar 
ages determined on samples from two localities that 
were inferred to be the same geologic unit based on 
field mapping and stratigraphic relationships.

All Cenozoic zircon U-Pb ages from each detrital 
zircon sample were included in each MLA analy-
sis, with the exception of a single 24 Ma zircon 
grain from the Unit 38 Tuff. This age was excluded 
because it could be demonstrated independently 
that the age disagreed with stratigraphic con-
straints on the depositional age of the unit sampled. 
Additionally, the measured U concentration from 
this grain (6675 ppm) was a factor of 6 higher than 
for any other grain analyzed, suggesting that the 
young age may be the result of diffusional lead loss 
due to radiation damage (Lee et al., 1997).

Zircon (U-Th)/He Thermochronology

Four tuffaceous sandstones were dated with 
the (U-Th)/He method at the University of Michi-
gan Thermochronology lab following the standard 
methods of Niemi and Clark (2018). Three grains 
were analyzed per sample and reported uncertain-
ties are ± 1 standard error of the mean age of each 
sample. Ages are summarized in Table 1, and full 
analytical data are in Table S2 (see footnote 1).
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40Ar/39Ar Geochronology

No new 40Ar/39Ar analyses were performed 
for this study; however, six previously analyzed 
40Ar/39Ar ages from tuffs within the Titus Canyon 
Formation and other Cenozoic strata in eastern 
Death Valley were recalculated and updated to 
the K decay constant of Renne et al. (2010, 2011) 
and the MMhb-1 monitor mineral age of Spell and 
McDougall (2003). Three unpublished 40Ar/39Ar ages 
from Cenozoic strata in the eastern Funeral Moun-
tains (Gutenkunst, 2006) were recalculated from 
original analytical data using IsoplotR (Vermeesch, 
2018) to determine plateau, isochron, weighted, and 
integrated ages (Fig. S1 and Table S3, see foot-
note 1). Two additional unpublished 40Ar/39Ar ages 
collected from the Titus Canyon Formation (Say-
lor and Hodges, 1994) were recalculated using the 
ArAR program (Mercer and Hodges, 2016). Original 
analytical data are not available for the samples 
from Saylor and Hodges (K. Hodges, personal com-
mun., 2020). A single published 40Ar/39Ar age from 

the Panuga Formation in the southern Grapevine 
Mountains (Snow and Lux, 1999) was recalculated 
using ArAR (Mercer and Hodges, 2016). All 40Ar/39Ar 
ages are summarized in Table 1.

The accuracy of the geographic and strati-
graphic positions of the 40Ar/39Ar samples is variable 
(location uncertainties are summarized in Table 1). 
Three sample locations from Gutenkunst (2006) 
were reported as stratigraphic position within a 
measured stratigraphic section from the eastern 
Funeral Mountains (section FM of Murray, 2002). 
The location of the FM measured section is approx-
imated from a small- scale figure; so we employed 
field observations of the orientation and younging 
direction of strata in the field area of Murray (2002) 
to assess the location of the measured section and 
to estimate the geographic position of the sam-
ples in the field (Fig. 4). The two sample locations 
from Saylor and Hodges (1994) are unknown, but 
their approximate location within the stratigraphy 
was reported. An 40Ar/39Ar age from the Panuga 
Formation in the southern Grapevine Mountains 

(Fig. 1) is well defined stratigraphically (Snow and 
Lux, 1999). The written description of the sample 
locality within the Panuga Formation is consistent 
with the known distribution of this formation (Snow 
and Lux, 1999); however, reported geographic coor-
dinates for this sample are inconsistent with both 
the written description and the distribution of the 
Panuga Formation. We therefore estimated the 
sample coordinates from the written description 
(Sample 592- GV1 K1; Fig. 4 and Table 1).

 ■ REVISED STRATIGRAPHY AND AGE 
OF PALEOGENE STRATA IN EASTERN 
DEATH VALLEY

Our mapping supports the division of Paleo-
gene strata in eastern Death Valley into the 
40(?)– 30 Ma Titus Canyon Formation, and the 
ca. 28–19 Ma Rocks of Porter Mine, units that can 
be differentiated based on their lithologic content, 
differing volcanic content, distinct depositional 
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timing based on radiometric ages, and consistent 
superposed stratigraphic relationship throughout 
the map area. Based on its distinctive lithology 
and our revised geochronology, the Rocks of Por-
ter Mine may correlate with the Ubehebe Formation 
of Snow and Lux (1999). We describe both units 
below, with emphasis on the characteristics that 
distinguish them, both in the field and in terms of 
depositional age.

Titus Canyon Formation

Our geologic mapping identifies exposures of 
the Titus Canyon Formation in a 35- km- long strip 
along the northeastern margin of the southern 
Grapevine and northern Funeral Mountains (Fig. 3 
and Plate 2). The thickness of the formation var-
ies from 500 m to ~1 km, with an overall trend of 
thickening to the northwest (Plate 2). Compared to 

previous studies (Stock and Bode, 1935; Cornwall 
and Kleinhampl, 1964; Wright and Troxel, 1993), our 
mapping extends the recognized distribution of the 
Titus Canyon Formation farther to the southeast. 
A small number of exposures originally mapped as 
the Titus Canyon Formation ~10 km northwest of the 
area mapped on Plate 2 (Stock and Bode, 1935; Say-
lor, 1991) have been previously refined as correlating 
with younger stratigraphic units (Niemi, 2012).
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Figure 5. Detrital zircon U-Pb age distributions, radial plots, and estimated maximum depositional ages (MDA) based on the Maximum Likelihood Estimation (MLE) algorithm of Ver-
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The depositional base of the Titus Canyon For-
mation is best exposed in the West Fork of Titus 
Canyon (in the vicinity of 36.8551°N, 117.0852°W), 
where the formation is deposited on the Cambrian 
Bonanza King Formation. Toward the southeast 
end of the mapping area near Indian Butte (Fig. 3, 
~36.7015°N, 116.8117°W), the nature of the base of 
the Titus Canyon Formation becomes obscured by 
poor exposure and pervasive faulting but appears 
to lie primarily on the Cambrian Zabriskie Quartz-
ite or Neoproterozoic to Cambrian Wood Canyon 
Formation (Plate 2). In many locations, especially 
near the southeastern extent of the map, extensive 
postdepositional normal faulting (Fig. 6) has put 
the Titus Canyon Formation in fault contact with 
underlying Paleozoic bedrock, making it difficult 

to determine the nature of the depositional base 
of the formation. Preserved exposures of the Titus 
Canyon Formation all lie in the hanging wall of the 
late Miocene Boundary Canyon detachment fault 
(Plate 2; Wright and Troxel, 1993).

Revised Lithostratigraphy of the Titus Canyon 
Formation

Here, we redefine the internal stratigraphy of 
the Titus Canyon Formation from the previous 
descriptions provided by Reynolds (1969) and Snow 
and Lux (1999). Reynolds uses the term “facies” in 
the names of all his mapped sub- formation units 
(e.g., brown conglomerate facies). Our mapping 

indicates that the divisions between our proposed 
map units are laterally extensive and well defined; 
so we divide the stratigraphy of the Titus Canyon 
Formation into members, listed here from oldest 
to youngest: (1) the Basal breccia member (largely 
unmodified from Reynolds’ sedimentary breccia 
facies); (2) the Redbed member (rocks that were 
originally included in the lower part of the varie-
gated facies of Reynolds); and (3) the Variegated 
member (the remainder of the variegated facies of 
Reynolds after removing the Redbed member). We 
include the brown conglomerate facies of Reynolds 
in the Variegated member.

Basal breccia member. The lowest unit of the 
Titus Canyon Formation, the Basal breccia member, 
includes rocks previously called the sedimentary 
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Figure 6. Field photos of different expressions of normal faulting in the study area. (A) Shallowly dipping normal fault exposed ~0.5 km east 
of Red Pass on Titus Canyon road (Fig. 3) separating the Breccia member of the Titus Canyon Formation (OGEOtb) from Paleozoic rocks (Pz) 
below. (B) Typical matrix supported angular to subangular breccia of the Basal breccia member of the Titus Canyon Formation. The Titus 
Canyon Formation is faulted along much of its basal contact; so some exposures of limestone breccia near the base of the formation may be 
products of fault- zone brecciation as opposed to sedimentary deposition. (C) Characteristic small offset, closely spaced, and steeply dipping 
normal faults that pervade the study area, here seen offsetting the contact between the Variegated (OGEOtv) and Redbed (OGEOtr) mem-
bers of the Titus Canyon Formation. (D) A major shallowly dipping normal fault placing Miocene Panuga Formation (Mipc) and Wahguyhe 
Formation (Miw) onto the upper Variegated member of the Titus Canyon Formation (OGEOtv) in the upper west fork of Titus Canyon (Fig. 3). 
(E) Moderate offset steeply dipping normal fault in the upper west fork of Titus Canyon with an opposite dip direction (~NE) to the majority 
of faults (~SW) in the study area.
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breccia facies by Reynolds (1969). The member is 
relatively thin (~0–30 m) and discontinuous, even 
where it is best exposed in the west fork of Titus 
Canyon and along the Titus Canyon Road south-
east of Red Pass (Fig. 3). The base of the member 
is marked by the first occurrence of angular frag-
ments of Bonanza King Formation (Fig. 6B), which 
are typically deposited onto intact Bonanza King 
Formation. The member consists of massive or 
weakly stratified matrix- supported breccia and 
conglomerate with pebble- to boulder- sized (up to 
2- m- diameter) clasts composed of primarily Paleo-
zoic limestone, quartzite, and chert.

Redbed member. We define the Redbed member 
of the Titus Canyon Formation as a succession of 
recessive brick- red calcareous siltstones to mud-
stones interfingered with resistant packages of 
grayish- purple sandstone and matrix- supported 
sandy conglomerate (Figs. 7B and 7D). This mem-
ber approximately represents the lower third of the 
variegated facies defined by Reynolds (1969). The 

Redbed member comprises 250 m of strata at its 
thickest exposures, though many locations have 
as little as 50 m of section that may be truncated 
by faults (Plate 1). The Redbed member is present 
across the entire map area, identifiable by its dis-
tinct combination of purplish- gray conglomerate 
and sandstone with brick- red siltstone. The Redbed 
member fines upward overall, with its base consist-
ing of predominantly purplish- gray cross- bedded 
sandy conglomerate that transitions upsection to 
recessive brick- red siltstone, which quickly become 
the dominant lithology toward the top of the mem-
ber (Fig. 7A). While the transition from dominantly 
purple- gray conglomerate to brick- red siltstone 
occurs at ~150 m above the base of the member 
in the west fork of Titus Canyon (Fig. 3), elsewhere 
the transition varies in stratigraphic position within 
the member, and we therefore did not interpret the 
transition as a mappable unit contact. The red reces-
sive exposures of the member are characterized 
by massive or weakly stratified brick- red siltstone 

containing sparse secondary calcite veins, sparse 
light greenish- gray oxidation halos, and sparse 
knobby calcareous concretions. In some places, the 
recessive red siltstone is organized into 1–5- m- thick 
bedding packages that become slightly more resis-
tant and calcareous up section before truncating at 
a planar surface and repeating (Fig. 7D). Intervals of 
resistant grayish- purple conglomerate contain well- 
rounded pebble- to cobble- sized clasts composed 
primarily of quartzite with some limestone and 
chert. Quartzite clasts are highly polished and have 
percussion marks. Conglomerate lenses generally 
fine upwards into grayish- purple sandstone con-
sisting of fine to coarse sub- angular grains in planar 
beds or sets of 10–20- cm- tall cross- beds (Figs. 7C 
and 7D). The purple sandstone and conglomerate 
intervals weather into resistant, smooth, rounded 
outcrops, while the recessive brick- red siltstone 
forms steep slopes mantled with loose weathered 
material (Figs. 7A and 7B). All the Duchesnean fos-
sil localities (Stock and Bode, 1935; Lander, 2019) 
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Figure 7. Field photos of the Redbed 
member of the Titus Canyon Forma-
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overlying fine- grained brick- red silt-
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cross- bedded pebbly sandstone chan-
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that we were able to locate lie within the brick- red 
siltstone beds of the Redbed member (Plate 1).

Variegated member. We redefine the Variegated 
member of the Titus Canyon Formation from the 
description of Reynolds (1969) as a sequence of 
colorful siltstones, sandstones, conglomerates, and 
limestones containing three marker units, including 
a distinctive green sandstone and conglomerate 
referred to as the middle green sandstone, and two 
tuffs (units 8 and 38 of Reynolds, 1969; Plate 1). 
The Variegated member is no more than 500 m 
thick and comprises repeating sequences (10–20 m 
thick) of moderately resistant pale greenish- or 
yellowish- gray sandy conglomerate separated by 
5–10- m- thick recessive packages of interbedded red 
calcareous siltstone and yellow limestone (Fig. 8A 
and Plate 1). The member outcrops as rounded 
hills that reflect differences in the erodibility of the 
conglomerate and siltstone intervals (Fig. 8A). The 
sandy conglomerate intervals (Fig. 8C) are typically 
matrix- supported, massive to cross- bedded, and 

contain 0.5–30- cm- diameter clasts of limestone, 
quartzite, and distinctive small black chert pebbles 
0.5–3 cm in diameter. Conglomerates are separated 
by red calcareous siltstone intervals that contain 
common reduction halos (Fig. 8D) and 0.5–1.5- m- 
thick gray or red micritic limestones that in some 
places show thin bedding- parallel sparry laminae 
(Fig. 8E) and commonly weather to a distinctive 
pale yellow (Fig. 8E). The micritic limestone beds 
are mostly devoid of allochems with the excep-
tion of a few oncolite beds in Titanothere Canyon 
and near Indian Butte (Fig. 3); these beds contain 
abundant oncoids (Fig. 8G; Titanothere Canyon out-
crop, 36.8298°N, 117.0128°W; Indian Butte outcrop, 
36.7025°N, 116.8088°W). Limestone- rich intervals 
have been previously used as marker intervals in 
the Titus Canyon Formation, though their lateral 
continuity is not clear between different sections. 
The tracing of a single limestone bed over signifi-
cant distances is made difficult by their relatively 
thin lenticular nature and the pervasive faulting in 

the area. As such, we cannot demonstrate the conti-
nuity of an “algal limestone” marker bed (Stock and 
Bode, 1935; Reynolds, 1969; Saylor, 1991) as a dis-
tinctive, traceable unit throughout the Titus Canyon 
Formation. Overall, the Variegated member does 
not display upsection changes in grain size and 
has a relatively consistent grain- size distribution. 
While the member is lithologically uniform through 
its entire thickness, with the exception of the Mid-
dle green sandstone marker unit, discussed below, 
sandy conglomerate intervals within the Variegated 
member do take on a redder oxide- stained appear-
ance upsection (Plate 1).

Middle green sandstone. The rhythmic bedding 
of the Variegated member is interrupted near its 
middle, where a distinctive sequence of greenish 
sandstones and conglomerates form a 50–60- m- 
thick marker unit originally identified by Stock and 
Bode (1935) as the “middle sandstone and con-
glomerate.” We dub this interval the middle green 
sandstone, a marker unit that can be found at most 
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(D and E). (B) The Variegated member 
becomes more limestone rich upsection, 
with thicker reddish- yellow recessive 
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marker bed (not in view) near Leadfield 
(Fig. 3). (C) Thick exposure of weakly 
bedded to massive yellowish- gray con-
glomerate typical of the lower half of the 
Variegated member. Clasts range from 
granule up to 20 cm diameter. (D) Char-
acteristic texture found within recessive 
red siltstones in the Variegated member, 
including reduction halos and mottled 
to massive bedding. (E) Limestone 
from a recessive interval of the Varie-
gated member showing yellowish weathering color (fresh rock is gray) and distinctive fabric of bedding- parallel sparry laminae. (F) Distinctive spheroidal weathering texture of the 
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localities throughout the map area, and which exhib-
its somewhat variable lithology but always includes 
a massive, recessive bluish gray- green, well- sorted 
medium sandstone near its base; the sandstone 
weathers into distinctive spheroidal outcrops 
(Fig. 8F). Many exposures of this marker unit also 
include resistant greenish- gray, matrix- supported 
sandy conglomerate, and rarely recessive bluish 
green- gray mudstone and thin brown limestones. 
The conglomerates that accompany the middle 
green sandstone interval contain a similar clast 
composition to those in the rest of the Variegated 
member, but with a greener sandy matrix. The red 
siltstone intervals immediately above and below the 
middle green sandstone contain some of the most 
well- developed micrite limestone beds in the entire 
formation (Fig. 8B and Plate 1).

Marker tuffs. Within the Variegated member, we 
have mapped two additional marker beds previ-
ously identified by Reynolds (1969): the unit 8 tuff 
near the bottom of the member and the unit 38 
tuff, which is near the top of the member. The unit 
8 and unit 38 tuffs are tuffaceous sandstones with 
a slightly off- white color and fine powdery appear-
ance. They appear rich in ash but in some places 
exhibit cross- bedding and a sandy composition 
that suggest they might be reworked, a possibility 
supported by the significant width of the Cenozoic 
age peaks in their detrital zircon spectra (Fig. 9).

Age Constraints from the Titus Canyon 
Formation

We report new geochronologic age information 
for the Titus Canyon Formation and develop an 
age model for the formation, based on a variety of 
geochronologic approaches, and we discuss this 
age model with respect to recognized paleontologic 
age constraints.

Maximum depositional age analysis from U-Pb 
detrital zircon geochronology. Of four Titus Can-
yon Formation samples from the vicinity of Titus 
and Titanothere canyons in the southern Grapevine 
Mountains (Fig. 3) that contained Cenozoic zircons, 
three came from the Variegated member, and a 
fourth came from the top of the Redbed member 

(Fig. 9 and Table 1). Samples from stratigraphically 
lower in the Redbed member contained primarily 
Mesozoic zircons (Fig. 9). Maximum depositional 
ages, based on MLA analysis (Fig. 5), and reported 
in stratigraphic order, are 36.0 ± 0.2 Ma from near 
the top of the Redbed member, and 33.4 ± 0.2 Ma, 
31.5 ± 0.8 Ma, and 30.6 ± 0.3 Ma from the Variegated 
member (Figs. 2 and 9; Table 1). Miller et al. (2022) 
reported six detrital zircon MDA determinations for 
samples collected from the Titus Canyon Forma-
tion near Leadfield and Monarch Canyon (Fig. 3); 
from oldest to youngest, these are 36.3 Ma, 36.0 Ma, 
34 Ma, 33.0 Ma, 32.3 Ma, and 23.7 Ma (Table 1, Fig. 9).

40Ar/39Ar geochronology. Of the six published 
and unpublished 40Ar/39Ar ages previously deter-
mined on tuffs in the southern Grapevine and 
northern Funeral Mountains (Saylor and Hodges, 
1994; Snow and Lux, 1999; Murray, 2002; Guten-
kunst, 2006), two ages are from strata that we have 
mapped as the Variegated member of the Titus 
Canyon Formation (Table 1). One is a sample most 
likely collected from the unit 38 tuff, which yielded 
a sanidine 40Ar/39Ar age of 30.4 ± 0.6 Ma (Saylor and 
Hodges, 1994) consistent with the zircon MDA that 
we determined for the same unit (30.6 ± 0.3 Ma). The 
second is a sample from near the base of the Varie-
gated member which yielded a biotite 40Ar/39Ar age 
of 34.5 ± 0.4 Ma (Saylor and Hodges, 1994). This age 
is similar to the 33.4 ± 0.2 Ma MDA from the base 
of the Variegated member near Leadfield (Fig. 3).

Zircon (U-Th)/He geochronology. The zircon 
(U-Th)/He method can be used to determine erup-
tive ages of tuffs and other volcanic rocks (e.g., 
Niemi, 2012); however, due to the relatively low clo-
sure temperature of helium in zircon (~180 °C), this 
method is susceptible to resetting in cases where 
samples have been modestly buried or reheated. 
We measured four zircon (U-Th)/He ages on sam-
ples from the southern Grapevine Mountains (Fig. 4 
and Table 1), three of which were collected from the 
Titus Canyon Formation in Titus Canyon (Fig. 3). Of 
these three samples, one from the unit 38 tuff near 
the top of the Variegated member yielded an age 
(28.9 ± 1.0 Ma) that overlapped within error with 
other radiometric age determinations for the unit 
38 tuff. Two ages determined on the unit 8 tuff, near 
the base of the Variegated member, yielded ages 

younger than the stratigraphically higher unit 38 
tuff, in one case by 15 m.y. We hypothesize that 
middle Miocene emplacement of at least six major 
ignimbrite sheets across the region (Plate 2; Niemi, 
2012) may have variably reset underlying zircon 
(U-Th)/He ages in the Titus Canyon area by inducing 
hydrothermal circulation (e.g., Abbey et al., 2018). 
We therefore note when zircon (U-Th)/He ages agree 
with other geo- and thermochronometers, but we 
do not find that this method produces consistently 
reliable eruption ages in the Titus Canyon region.

Paleontologic constraints on the age of the 
Titus Canyon Formation. Paleontologic evidence 
has been used to assign ages ranging from Eocene 
to Oligocene to the Titus Canyon Formation (Stock 
and Bode, 1935; Stock, 1936; Lander, 2019), with 
more recent studies coalescing around agreement 
on a Duchesnean North American Land Mammal 
age (middle to late Eocene, 37–40 Ma; e.g., Mason, 
1988). A recent reassessment of fossils from the 
Titus Canyon Formation resulted in the identifica-
tion of nine new local faunas, eight of which are 
found in the southern Grapevine Mountains in Titus 
and Titanothere canyons, all of which are inferred 
to be late Duchesnean in age (Lander, 2019).

Depositional age of the Titus Canyon Formation. 
The age of the base of the Titus Canyon Formation 
remains unresolved, as does the age of the Basal 
breccia member. The age of the Redbed member 
is partially constrained by both paleontologic and 
geochronologic data. Geochronologically, the 36.0 
± 0.2 Ma MDA from a sandstone near the top of the 
Redbed member, and the 34.5 ± 0.4 Ma 40Ar/39Ar 
from the base of the Variegated member tightly 
bracket the age of the top of the Redbed mem-
ber at ca. 35 Ma. This age places the ca. 34 Ma 
Eocene– Oligocene boundary and climate transi-
tion (e.g., Liu et al., 2009; Fan et al., 2018) at or 
just above the Redbed– Variegated member con-
tact. A Duchesnean age for fossils in the Titus 
Canyon Formation is consistent with the geochro-
nologic constraints, as all the fossil localities are 
found within the Redbed member below the strati-
graphic level of the 36.0 ± 0.2 Ma MDA constraint. 
We find the correlation between the Titus Canyon 
local fauna and the Upper Porvenir local fauna that 
yields an age of ca. 37–38 Ma at the stratigraphic 
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position of the fossil localities within the Titus 
Canyon Formation to be reasonable, given other 
existing age constraints. In the western West Fork 
and Upper East Fork sections (Fig. 3 and Plate 1), 
100–200 m of strata of the Redbed member under-
lie the stratigraphic position of the fossil localities. 
No Cenozoic zircons were recovered from samples 
collected from these strata. Given the ages of the 
fossils in the Titus Canyon Formation, and an esti-
mated rate of deposition for the Redbed member 
(Fig. 9), it would be surprising if the base of the 
Redbed member were older than middle Eocene. 
However, determining the age of the lower portions 
of the Redbed member may require approaches 
with limited reliance on absolute age dating, such 
as magnetostratigraphy, and the coarse conglomer-
atic nature of these deposits may prove challenging 
in that regard.

The age of the Variegated member is well con-
strained by our data and spans from ca. 35 Ma at 
the base of the member, as described above, to 
ca. 30 Ma at the top, as recorded by multiple age 
measurements on the unit 38 tuff near the top of 
this member (Plate 1). No more than a few meters 
of Variegated member strata overlie the unit 38 tuff 
at any measured section, suggesting that this age 
is representative of the preserved top of the Titus 
Canyon Formation. Overall, the six MDAs from 
Miller et al. (2022) agree with our age model, with 
the lone exception of their sample ELM18DVTC-7, 
which produced a 23.7 Ma MDA despite lying 
distinctly below the confidently dated ca. 30 Ma 
unit 38 tuff (Fig. 9 and Plate 1). We observed no 
obvious structural or depositional structure that 
could explain such an age discrepancy, and fur-
ther investigation will be necessary to reconcile 
these two ages.

In summary, the Titus Canyon Formation is mid-
dle Eocene to early Oligocene in age, contains a 
fossil record of Duchesnean land mammals, and 
encompasses the Eocene–Oligocene boundary.

Provenance of the Titus Canyon Formation

In addition to their use in determining maxi-
mum depositional ages, detrital zircon U-Pb ages 

also provide information about provenance (e.g., 
Thomas, 2011). In samples from the Titus Canyon 
Formation, three distinct populations of zircon U-Pb 
ages are identifiable (Fig. 9). The oldest population 
of grains range from 3.1 Ga to 400 Ma, forming sig-
nificant peaks at ca. 2.7 Ga, 1.9–1.8 Ga, 1.5–1.4 Ga, 
and 1.1–1.0 Ga (blue shaded peaks on Fig. 9). An 
intermediate age population forms a distinctive 
triple peak distribution of 105 Ma, 170 Ma, and 
220 Ma (the prominent 170 Ma peak is shaded 
green on Fig. 9). The youngest zircon age popula-
tion is Cenozoic and forms a cluster ranging from 
40 Ma to 30 Ma (yellow shaded peak on Fig. 9). 
Broadly speaking, these three populations rep-
resent derivation from the Neoproterozoic and 
Paleozoic miogeocline (e.g., Gehrels et al., 1995), 
the Sierran arc (e.g., Lechler and Niemi, 2011), and 
Cenozoic volcanic centers of the Basin and Range 
(e.g., McQuarrie and Oskin, 2010).

The relative proportion of each of these three 
populations changes as a function of stratigraphic 
position in the Titus Canyon Formation (Fig. 9). 
The lowest three samples, all collected from the 
Redbed member, include almost entirely Meso-
zoic zircons, with no Cenozoic zircons and very 
few Paleozoic and Precambrian zircons. Samples 
from the Variegated member have a more variable 
detrital zircon age population distribution. Sierran 
zircons are the subordinate population in all sam-
ples from the Variegated member, while the major 
populations are characterized by either a Paleozoic 
and older miogeoclinal source or a Cenozoic vol-
canic source, presumably depending on whether 
the sample was dominated by fluvial erosion and 
transport or volcanic airfall deposition. The detrital 
zircon spectra of Miller et al. (2022) show a similar 
provenance pattern, with the upper half of the Titus 
Canyon Formation showing more Cenozoic volca-
nic zircons, fewer Mesozoic Sierran arc zircons, and 
more Paleozoic or older zircons than the lower half 
of the formation.

Rocks of Porter Mine

In the vicinity of the type section of the Titus 
Canyon Formation, near Leadfield (Fig. 3), the 

Variegated member of the Titus Canyon Formation 
is overlain in angular unconformity by distinc-
tive green conglomerates of the middle Miocene 
Panuga Formation (Reynolds, 1969; Snow and Lux, 
1999; Niemi, 2012). Both of these units can be traced 
southward along the eastern side of the Grapevine 
Mountains, where they remain juxtaposed across 
an unconformity. However, south of Daylight Pass 
(Fig. 3), which approximately separates the Grape-
vine Mountains from the Funeral Mountains, the 
two units continue to be distinguishable but are 
separated by an intervening package of strata that 
is not readily ascribed to either of these two units 
(Plate 2). Where exposures of this intervening 
sequence of strata have been previously mapped, 
they have been variably assigned to the Panuga 
Formation (or Green conglomerate facies) (Murray, 
2002; Gutenkunst, 2006), the Titus Canyon Forma-
tion (Saylor, 1991; Gutenkunst, 2006) or referred 
to as Miocene Tuffaceous Sandstone and Volcanic 
Breccia (Wright and Troxel, 1993). We describe the 
lithostratigraphy and geochronologic age control 
on these strata below and demonstrate that these 
strata are lithologically and temporally distinct from 
the Titus Canyon Formation. We informally name 
these strata the Rocks of Porter Mine, for exposures 
south of Daylight Pass near Porter Mine (Fig. 3; 
36.7741°N, 116.9129°W), and we discuss correlation 
of these strata with a succession of late Oligocene 
to early Miocene rocks that are regionally wide-
spread in the Death Valley region and collectively 
termed the Ubehebe Formation (Snow and Lux, 
1999; Fridrich and Thompson, 2011).

Lithostratigraphy

An intact section of the Rocks of Porter Mine 
previously mapped as Titus Canyon Formation 
(Saylor, 1991) is found in the Funeral Mountains, 
~2 km southeast of Daylight Pass, ~1 km west of the 
abandoned Porter Mine (Fig. 3; Plate 2; 36.7741°N, 
116.9129°W). These exposures can be traced south-
eastward to exposures near Indian Butte (Fig. 3 and 
Plate 2; 36.6941°N, 116.8011°W) that were previ-
ously mapped as either Titus Canyon Formation or 
Panuga Formation (Saylor, 1991; Gutenkunst, 2006). 
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The Rocks of Porter Mine consist of bluish- green 
and gray conglomerates with pebble- to cobble- 
sized clasts, coarse sandstones, and tuffaceous 
sandstones that fine upwards into yellowish- beige 
to white sandstones, brown resistant limestones, 
recessive pale mudstone, and thick airfall tuffs 
(Fig. 10). At the southeastern extent of the map-
ping area (Plate 2), the lowest part of the Rocks of 
Porter Mine consists of 1–4- m- thick greenish- gray 
sandy conglomerates interbedded with 1–4- m- thick 
beds of mudstone and coarse sandstones (Figs. 10D 
and 6G) that in some places take on a striking dark- 
green coloration. The unit fines upwards into less 
colorful beige, brown, and pale- yellow fissile shales, 
and 10- cm- to 1- m- thick fossiliferous limestones, 
some of which contain small gastropods (Figs. 10E 

and 10F). Fossil fish have also been reported from 
strata equivalent to those that we describe here 
(Nyborg et al., 2017).

Northwest of Daylight Pass in the Grapevine 
Mountains, exposures of the Rocks of Porter Mine 
are incomplete, with the best exposure being a 
fault- bounded wedge in upper Titanothere Can-
yon directly below Red Pass (Fig. 3; 36.8302°N, 
117.0251°W). Here, sandstone, conglomerate, and 
mudstone beds (Fig. 10D) take on a light blue- green 
color, similar to the lowest part of the Indian Butte 
stratigraphy. Below Red Pass, the Rocks of Porter 
Mine also contain an undated, highly resistant 
welded tuff with pumice fragments (Figs. 10A, 
10B, and 10C; 36.8299°N, 117.0259°W). Overall, the 
Rocks of Porter Mine thicken to the southeast, a 

trend opposite that of the underlying Titus Canyon 
Formation. The Rocks of Porter Mine also display 
a greater degree of lateral variability in thickness 
than the Titus Canyon Formation, possibly indi-
cating deposition in small wedge- shaped basins 
bounded by syn- depositional normal faults (e.g., 
Fridrich and Thompson, 2011).

Depositional Age of the Rocks of Porter Mine 
from 40Ar/39Ar Analyses

Based on our field observations and mapping, 
the Rocks of Porter Mine include several 40Ar/39Ar 
age analyses that were previously reported as age 
constraints for the Titus Canyon or Panuga Forma-
tions but which instead represent the depositional 
age of the Rocks of Porter Mine (Table 1). Guten-
kunst (2006) analyzed three 40Ar/39Ar ages from a 
measured section through the Rocks of Porter Mine 
near Indian Butte (Fig. 3 and Plate 2); we recalcu-
lated these ages to be 28.2 ± 0.2 Ma, 23.6 ± 0.1 Ma, 
and 19.3 ± 0.5 Ma (Fig. 4 and Table 1). A single sam-
ple from an exposure of the Rocks of Porter Mine 
near Chloride Cliff road (Fig. 3) produced a zircon 
(U-Th)/He age of 24.4 ± 2.1 Ma, which is consistent 
with ages from Gutenkunst (2006), but is subject to 
the caveats regarding potential resetting of zircon 
(U-Th)/He ages described in the Methods section 
(Table 1). In summary, recalculated 40Ar/39Ar ages 
from tuffs that we map as within the Rocks of Porter 
Mine span the interval 28.2 ± 0.2 Ma to 19.3 ± 0.5 Ma, 
indicating that these strata are approximately late 
Oligocene to early middle Miocene in age.

Regional Correlation of the Rocks of Porter Mine

The late Oligocene to early middle Miocene dep-
ositional age range for the Rocks of Porter Mine is 
consistent with the depositional age range of other 
packages of strata previously correlated with the 
regionally widespread Ubehebe Formation. These 
include strata at Bat Mountain, at the southernmost 
end of the Funeral Mountains (25–20 Ma; Fridrich 
and Thompson, 2011; Fridrich et al., 2012) and in the 
Cottonwood Mountains (24–19 Ma; Snow and Lux, 
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Figure 10. Field photos of the Rocks of Porter Mine. (A) Welded tuff exposed just east of Red Pass (Fig. 3) exhibiting flow 
banding. Photo taken at 36.8298°N, 117.0259°W. (B) Examples of brown pumice clasts from the tuff shown in A. (C) Close- 
up photo of greenish- gray lapilli and weak horizontal fabric in the tuff shown in A. D, E, F, and G: Various examples of 
the sedimentary structures and rock types associated with the Ubehebe Formation, including: (D) Resistant greenish 
to bluish- gray sandstones (SS) and pebbly conglomerates (Cg) interbedded with recessive pale- green mudstone (Ms). 
(E) 1–3- cm- thick tan- brown limestone bed showing small 3–5- mm- diameter gastropod fossils. (F) Fissile ~0.5- cm- thick 
laminae of tan to pale orange shale. (G) Thickly bedded massive turquoise, green, pale brown, and gray coarse sandstone 
and pebble conglomerate typical of Rocks of Porter Mine exposures in the study area.
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1999). In addition to a similar age of deposition, the 
Rocks of Porter Mine share the fining- upward stra-
tigraphy and volcanic- rich nature of other known 
exposures of the Ubehebe Formation, traits that 
differentiate this formation from the Titus Canyon 
Formation. Based on the depositional age determi-
nations for the Rocks of Porter Mine, their distinct 
lithology, and similarities to other strata ascribed 
to the Ubehebe Formation, we tentatively correlate 
the Rocks of Porter Mine with the Ubehebe Forma-
tion of Snow and Lux (1999), pending identification 
and description of a type- section for this unit and 
targeted sampling for more comprehensive geo-
chronologic constraints on the depositional age 
range of this unit.

 ■ TECTONO- STRATIGRAPHY AND 
FORMATION OF THE TITUS CANYON 
FORMATION

The Titus Canyon Formation records deposi-
tion from the Duchesnean (37–40 Ma) to the early 
Oligocene (30 Ma) (Fig. 9). Our differentiation of 
the Titus Canyon Formation from the Rocks of Por-
ter Mine affords us an opportunity to revisit the 
evolution of the Titus Canyon basin and argue 
that its extent is limited to exposures in the north-
ern Funeral and southern Grapevine Mountains. 
Depositional patterns in continental extensional 
basins are primarily controlled by the structural 
production of accommodation space and the cli-
matically modulated supply of sediment (Carroll 
and Bohacs, 1999; Gawthorpe and Leeder, 2000), 
with a balance between basins that overfilled with 
sediment and host throughgoing drainages (i.e., 
exorheic), or underfilled and hydrologically closed 
(i.e., endorheic). The relative proportion of fluvial to 
lacustrine strata in a basin can serve as a proxy for 
overfilled and underfilled conditions, respectively 
(e.g., Geurts et al., 2020), and provides a useful 
framework for dividing the depositional history 
of the Titus Canyon basin into two phases. The 
following interpretations build on extensive previ-
ous sedimentologic and stratigraphic work in this 
region (Stock and Bode, 1935; Reynolds, 1969; Say-
lor, 1991; Murray, 2002; Gutenkunst, 2006; Ridgway 

et al., 2011; Niemi, 2012; Miller et al., 2022). Our 
goal is to summarize and correlate these works and 
place their observations within a common tectono- 
stratigraphic and geochronologic framework, as 
many of the previous studies were conducted in 
small, disconnected study areas without robust 
geochronology.

Extensional Basin Initiation and Fluvial 
Phase (Redbed Member)

The Titus Canyon basin initiated as an incipi-
ent extensional basin no later than 37 Ma, and 
early deposition of the Basal breccia and Redbed 
members continued until ca. 35 Ma. The overall 
fining- upwards stratigraphy of the Basal breccia and 
Redbed members of the Titus Canyon Formation 
records a progression from proximal rock avalanche 
breccias and coarse fanglomerate deposits to dis-
tal overbank deposits and conglomeratic channel 
bodies (Reynolds, 1969; Murray, 2002; Gutenkunst, 
2006; Ridgway et al., 2011). This progression is rec-
ognized in other early extensional basin sequences 
and arises from coarse scarp- derived deposits even-
tually yielding to a basin- floor fluvial system as the 
basin area expands (Gawthorpe and Leeder, 2000). 
The dominance of fluvial over lacustrine deposition 
during this early phase of basin formation implies 
an overfilled basin condition, and thus an exorheic 
hydrology with throughgoing drainages. Estimates 
of depositional rates of ~25 m/m.y., as derived from 
the geochronology and biostratigraphy of the Red-
bed member (Fig. 9) indicate a slower depositional 
rate than in the upper Titus Canyon Formation and 
a slower rate than observed in typical extensional 
basins (50–200 m/m.y.; Allen and Allen, 2013). Com-
bined with the overfilled state of the basin, this 
implies a relatively slow tectonic subsidence rate 
during this period.

Provenance information from the Redbed mem-
ber of the Titus Canyon Formation also sheds light 
on regional drainage geometries and extent at the 
time of Titus Canyon basin formation. Detrital 
zircon U-Pb provenance analysis of the Redbed 
member reveals consistent detrital zircon spectra 
throughout the unit, dominated by Mesozoic ages, 

with significant age peaks in the middle Jurassic 
(ca. 165 and 175 Ma), a broad peak of late Triassic 
ages, and subordinate Late Cretaceous ages (Fig. 9). 
These three age peaks are consistent with recog-
nized pulses of Sierran arc magmatism (e.g., Ducea, 
2001; Coleman et al., 2003; Cecil et al., 2019); how-
ever, a specific source for the observed age spectra 
in the Redbed member is challenging to pinpoint. 
The subordinate nature of the Late Cretaceous ages 
argues against derivation from the present- day 
eastern Sierra Nevada, where exposures of Late 
Cretaceous plutons are extensive (Chen and Moore, 
1982; Coleman and Glazner, 1998).

The Titus Canyon basin was located just east 
of the boundary between primarily Mesozoic arc- 
related rocks of the Sierra Nevada to the west and 
Neoproterozoic through Paleozoic sedimentary 
strata of the Cordilleran miogeocline to the east 
(e.g., Jennings et al., 1977). Several ranges in the 
westernmost Basin and Range, including the White, 
Inyo, and Cottonwood mountains, expose minor 
Late Cretaceous and Triassic intrusive bodies and 
host large Jurassic batholiths, with ages that over-
lap the detrital zircon ages observed in the Redbed 
member (Chen and Moore, 1982; Snow et al., 1991; 
Niemi et al., 2001; Coleman et al., 2003), making 
them a viable source terrane for the early Titus 
Canyon Formation.

Conglomerate clast compositions in the Redbed 
member of the Titus Canyon Formation further sup-
port derivation from a westerly source (Reynolds, 
1969). Although lower Paleozoic carbonate and 
siliciclastic strata are exposed in most of the 
ranges that surround Death Valley, the identifica-
tion of case- hardened carbonate clasts as being 
derived from Pennsylvanian- aged limestone, and 
the identification of Permian fusulinid- bearing lime-
stones (Reynolds, 1969), limit the source for the 
Redbed member conglomerate clasts to sources 
on the western side of modern- day Death Valley 
(McAllister, 1952; Niemi et al., 2001). Clasts of quartz 
monzonite of inferred Jurassic age, and porphyritic 
granite clasts, are also observed within the Red-
bed member. The Cottonwood Mountains, on the 
northwestern side of Death Valley, are a compelling 
source terrane for the combination of Paleozoic 
miogeoclinal clasts, Jurassic- aged monzonite clasts, 
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and upper Paleozoic fusulinid- bearing limestones 
(Snow and Lux, 1999; Niemi et al., 2001), as well 
as the Jurassic and Triassic detrital zircon spectra. 
Further geochronologic analysis of individual clasts 
is needed to link specific clasts to unique source 
terranes. However, despite uncertainty in the exact 
provenance of the Redbed member of the Titus 
Canyon Formation, the basin was receiving sed-
iment from a catchment that encompassed rocks 
not exposed in the local bedrock of the Grapevine 
and Funeral mountains, and which was almost 
certainly derived from the west, an inference also 
supported by paleocurrent and sedimentary struc-
ture observations (Stock and Bode, 1935; Reynolds, 
1969; Gutenkunst, 2006).

Acceleration of Extension and Fluvial- 
Lacustrine Phase (Variegated Member)

The Variegated member records a shift in lith-
ologic character, provenance, and fossil content 
of the Titus Canyon basin. Within the Variegated, 
conglomeratic channel bodies and silty overbank 
deposits rhythmically alternate with 0.5–1.5- m- thick 
lacustrine micrite beds, contrasting with the coarse, 
proximal deposition recorded by the Redbed mem-
ber (Reynolds, 1969; Murray, 2002; Gutenkunst, 
2006; Ridgway et al., 2011). The appearance of 
lacustrine conditions above the Redbed–Variegated 
member contact implies a transition from entirely 
exorheic (fluvial) to sometimes under- filled lacus-
trine conditions that could have been tectonically 
or climactically modulated. However, the similar 
timing of the Redbed to Variegated member tran-
sition (approx. 36–34 Ma) to the Eocene–Oligocene 
climate transition (ca. 34 Ma), during which north-
ern latitudes cooled ~5–7 °C, may support a strong 
climatic influence during this time (Liu et al., 2009; 
Fan et al., 2018). Potential climatic influence on the 
Titus Canyon basin is not addressed in this manu-
script, but it remains an important area for future 
investigation.

Sediment accumulation rates and provenance 
data from the Variegated member, however, sug-
gest an increase in tectonic activity within the Titus 
Canyon basin. Deposition rates for the Variegated 

member are as high as ~250 m/m.y., distinctly faster 
than the ~25 m/m.y. sediment accumulation rate 
within the Redbed member, and fast compared to 
compiled extensional basin rates of 50–200 m/m.y. 
(Fig. 9; Allen and Allen, 2013). Geologic evidence 
for increased rates of local tectonism as a cause 
for increased sediment accumulation rates are pre-
served within the Variegated member, which both 
coarsens and thickens into the Fall Canyon fault 
in the upper West Fork of Titus Canyon (Plate 2).

The increase in sediment accumulation rate in 
the Variegated member is accompanied by a shift 
in basin provenance signature. Detrital zircon spec-
tra from the Variegated member record Cenozoic 
zircon grains, suggesting an increase in volcanic 
input to the basin, likely from the onset of Oligo-
cene ignimbrite eruptions in northern and central 
Nevada (Coney, 1978; Best et al., 2013; Miller et al., 
2022), although such a signature is not diagnostic of 
fluvial basin geometry or extent. More pronounced 
is the shift in provenance from a dominantly Meso-
zoic Sierran arc signature to a broad age spectrum, 
similar to the detrital zircon spectra of Paleozoic and 
Neoproterozoic miogeoclinal rocks. Three of the 
four detrital samples from the Variegated member 
yield no evidence of derivation from a Mesozoic arc 
source (Fig. 9), and in the one Variegated sample 
where Mesozoic ages are present, they are Late 
Jurassic to Early Cretaceous, markedly different 
from the mid- Jurassic and Triassic ages found in 
the Redbed member (Fig. 9). The greater variability 
in detrital zircon spectra observed within the Var-
iegated member also reflects a departure from the 
Redbed member, which exhibits consistent detrital 
zircon signatures.

Provenance of the Variegated Member

The provenance changes we observe in the 
detrital zircon age spectra between the Redbed 
and Variegated members match previous obser-
vations of changes in clast composition in the Titus 
Canyon Formation (Reynolds, 1969; Murray, 2002; 
Miller et al., 2022). The Variegated member does 
not contain clasts of upper Paleozoic (Permian and 
Pennsylvanian) carbonates, and granitoid clasts are 

less common than in the Redbed member (Reyn-
olds, 1969). Within the Variegated member, Miller 
et al. (2022) identify several distinctive clast com-
positions that together suggest an origin from the 
Roberts Mountain and Golconda allochthons in 
northern Nevada. Miller et al. (2022) link red radi-
olarian chert pebbles and cobbles to the Upper 
Paleozoic Havallah sequence in the Golconda 
allochthon and cobbles of black chert with pale 
phosphatic nodules to Devonian deep- water strata 
of the Roberts Mountain allochthon. Miller et al. 
also identify cobbles of conglomerate which them-
selves contain clasts of mafic volcanics, radiolarian 
chert, and orthoquartzite that suggest derivation 
from conglomerates of the Antler basin of northern 
and central Nevada.

While the clast assemblage identified by Miller 
et al. (2022) points to a provenance from northern 
Nevada, a significant portion of Titus Canyon sedi-
ment must be derived from more local exposures of 
the Neoproterozoic and Paleozoic Cordilleran Mio-
geocline. Highly polished and well- rounded clasts 
within the Titus Canyon Formation comprise dis-
tinctive formations derived from the miogeocline, 
including the Stirling Quartzite, Wood Canyon For-
mation, Zabriskie Quartzite, and Eureka Quartzite 
(Reynolds, 1969; Niemi, 2002). The distribution of 
Paleozoic quartzites across the western U.S. makes 
these clasts of limited utility for ascribing prove-
nance; however, the distribution of Neoproterozoic 
quartzites is limited to the western portion of the 
central Basin and Range (Stewart, 1970). In addi-
tion to highly polished and rounded pebbles and 
cobbles of quartzite and chert, the Redbed mem-
ber also contains angular boulders of carbonate 
megabreccia (1−>10 m) that are derived from 
paleotopographic highs composed of local bed-
rock (predominantly the Paleozoic Bonanza King 
Formation), within the Titus Canyon Basin (Reyn-
olds, 1969).

The well- rounded nature of the conglomerate 
clasts within the Variegated member, especially 
highly polished chert and quartzite clasts, along 
with the observation of clasts that are distally 
sourced from the Golconda and Roberts Moun-
tain allochthons, have been used to argue that the 
Titus Canyon Formation represents a remnant of 
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a larger fluvial system that transported sediment 
from sources in northern Nevada to the then coastal 
Mojave region (Miller et al. 2022). However, mature, 
polished, and well- rounded sedimentary clasts 
(especially quartzite and chert) can arise from multi-
ple episodes of sedimentary recycling, as opposed 
to a singular episode of significant fluvial trans-
port (e.g., Blatt, 1967; Horton and Schmitt, 1998). 
The observation that components of the Roberts 
Mountains/Golconda allochthon assemblage are 
themselves found in clasts of conglomerate within 
the Variegated member (Miller et al., 2022) provides 
further evidence of at least one generation of sed-
imentary recycling of the clast assemblage within 
the Titus Canyon Formation.

A potential source for recycled clasts is con-
glomerate of the Mississippian Eleana Formation, 
which is exposed immediately to the east of Titus 
Canyon at Bare Mountain and the Nevada Test 
Site (Fig. 1) and contains clasts of radiolarian chert, 
phosphatic chert, and mafic volcanics that are 
inferred to have been derived from erosion of the 
northern Antler foredeep during the Antler Orogeny 
(Trexler and Cashman, 1997). The Eleana Formation 
was deposited as a submarine fan in the southern 
Antler Basin foredeep (Poole and Sandberg, 1977) 
and contains quartzites associated with both alloch-
thonous sources from northern Nevada and local 
(miogeoclinal) sources (Trexler and Cashman, 1997). 
Resistant clasts (cherts, quartzites, and litharenites) 
within the Eleana are well- rounded and polished 
(Trexler and Cashman, 1997). The Eleana Formation 
has been identified as a source of mafic volcanic 
and radiolarian chert clasts in other early Tertiary 
basins in the central Basin and Range (e.g., Gold-
strand, 1992). As such, recycling of sediment from 
the Antler foredeep basin should be considered a 
possible proximal source for Titus Canyon Forma-
tion clasts that originated in the Roberts Mountains 
and Golconda allochthons (Miller et al., 2022).

Paleogeographic Implications of the 
Variegated Member

The provenance of the Titus Canyon Forma-
tion has the potential to test hypotheses of the 

paleotopography and drainage network integra-
tion and reorganization of the Cordillera during the 
Eocene to Oligocene transition from contraction to 
extension, a topic of considerable debate (cf. Col-
gan and Henry, 2009; Henry and John, 2013; Snell 
et al., 2014; Smith et al., 2017; Cassel et al., 2018; 
Long, 2018; Best et al., 2016; Lund Snee and Miller, 
2022; Miller et al., 2022). However, evidence of sedi-
mentary recycling within the clast population of the 
Variegated member of the Titus Canyon Formation, 
and the possibility of a local source for the well- 
rounded and polished clasts of Roberts Mountains, 
Golconda, and miogeoclinal affinity contradict a 
straightforward interpretation of the provenance of 
the Titus Canyon Formation (e.g., Miller et al., 2022), 
and thus its implications for the paleogeography of 
the proto- Basin and Range.

The most compelling compositional change 
observed between the Redbed and Variegated 
members is the up- section loss of Sierran- affinity 
granitic clasts and miogeoclinal Permian and Penn-
sylvanian clasts. Together, these changes broadly 
suggest a shift from a westerly to a northerly sed-
iment source, a shift also observed in our detrital 
zircon provenance data. The Late Jurassic to Early 
Cretaceous ages of detrital zircons in the Varie-
gated member, which are ages not well represented 
among plutons of the Sierran arc, along with the 
lack of Late Triassic, Middle Jurassic, and Late Cre-
taceous zircon ages suggest that the source area of 
the Variegated member cannot contain significant 
exposure of the most common plutonic ages of the 
Sierran arc (e.g., Ducea, 2001; Cecil et al., 2019). The 
Sylvania and Palmetto mountains, which lie ~50 km 
north of present- day exposures of the Titus Canyon 
basin, are underlain by Late Jurassic plutons that 
are intruded by small plutonic bodies of Late Creta-
ceous age. These plutonic ages are consistent with 
the detrital zircon spectra in the Variegated member, 
although geochronologic age constraints on the 
crystallization ages of these plutons (as opposed 
to cooling ages) are sparse (e.g., Maldonado et al., 
1988). We note that palinspastic reconstructions 
of the central Basin and Range place present- day 
exposures of the Eleana Formation (i.e., at Bare 
Mountain and in the Eleana Range) to the north 
of the Titus Canyon Basin in Eocene time (Snow 

and Wernicke, 2000; Cashman and Sturmer, 2021). 
Together, these observations delineate a proximal 
region to the north of the Titus Canyon Basin that 
would have been a viable source for the clast pop-
ulation and detrital zircon spectra observed in the 
Variegated member.

In summary, the Titus Canyon basin initiated 
as an extensional basin in the late Eocene on the 
eastern slope of the paleo–Sierra Nevada arc. Tec-
tonic subsidence was limited in magnitude, as 
evidenced by the relatively small (~1 km, Plate 1) 
maximum thickness of the formation. Minimal 
subsidence would allow the basin to remain over-
filled for most of its depositional history, although 
it does appear to have experienced transitions from 
endorheic to exorheic conditions in response to 
tectonic or climatic forcing, as is observed in other 
rift systems (e.g., the Rio Grande and East Afri-
can rifts; Repasch et al., 2017; Berry et al., 2019). 
The consistency of the detrital zircon spectra and 
clast composition throughout the Redbed mem-
ber suggest minimal drainage reorganization or 
evolution during this time. The Variegated member 
of the Titus Canyon basin records major changes 
in the Titus Canyon basin, including significantly 
increased sediment accumulation rates and a 
transition to a fluvial- lacustrine sedimentary envi-
ronment, as well as a transition to a more northerly 
provenance source. Our interpretation of the basin 
as extensionally controlled is compatible with the 
basin being an intermediate sediment sink along 
a longer sediment transport path (e.g., Miller et 
al., 2022); however, as discussed above, it is not 
clear that available provenance data require distal 
sedimentary sources.

Extent of the Titus Canyon Basin and Regional 
Correlations of the Titus Canyon Formation

As one of the earliest recognized pre–Basin 
and Range extensional units in the Death Valley 
region (e.g., Stock and Bode, 1935; Reynolds, 1969), 
the Titus Canyon Formation has been tenuously 
correlated with multiple poorly dated units in the 
central Basin and Range. A number of presumed 
Paleogene rock exposures in and around the Death 
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Valley region, including the Horse Spring Forma-
tion, the unnamed conglomerate of the Fallout 
and Jumbled Hills, the Rocks of Winapi Wash, 
and the unnamed conglomerate of Gravel Can-
yon, among others, have been correlated with the 
Titus Canyon Formation on the basis of broad lith-
ologic similarity and similar stratigraphic position 
above the sub- Tertiary unconformity (Niemi, 2002, 
and references therein). However, these deposits 
have neither biostratigraphic nor absolute age 
control that substantiates a temporal correlation 
with the Titus Canyon Formation. Moreover, such 
lithostratigraphy- based correlations were largely 
proposed prior to the recognition of the complex 
early Cenozoic depositional history of the Death 
Valley region that has been delineated in the past 
decades (e.g., Çemen et al., 1999; Snow and Lux, 
1999; Fridrich and Thompson, 2011), and that we 
further refine here. Descriptions of these units, 
gleaned primarily from stratigraphic descriptions 
on published geologic maps, generally bear greater 
similarity to the Rocks of Porter Mine (Ubehebe 
Formation) as defined and described here than to 
the Titus Canyon Formation. Frequent descriptions 
of fossiliferous limestones and well- developed tuff 
beds are particularly more diagnostic of Ubehebe- 
equivalent strata than of Titus Canyon. Thus, our 
inference is that the Titus Canyon basin was of 
limited spatial extent and is preserved almost 
exclusively within the southern Grapevine and 
northern Funeral Mountains, while the Ubehebe 
Formation may have a much broader spatial distri-
bution across the central Basin and Range.

 ■ STRUCTURE OF THE TITUS CANYON 
BASIN

The Titus Canyon basin has been described 
as having an extensional or transtensional origin 
based on observations of basin- scale sedimento-
logical architecture and facies analysis (e.g., Saylor, 
1991; Gutenkunst, 2006; Fridrich and Thompson, 
2011). However, a coherent structural framework 
for the Titus Canyon basin has not previously been 
defined, in part due to myriad geologic maps that 
partially encompass the extent of the Titus Canyon 

Formation (e.g., Cornwall and Kleinhampl, 1964; 
Reynolds, 1969; Saylor, 1991; Wright and Troxel, 
1993; Niemi, 2012). In mapping the extent of the 
Titus Canyon Formation and synthesizing the struc-
tures that bound the formation, we find that the 
Titus Canyon Formation in the Grapevine Moun-
tains is everywhere confined to the hanging wall 
of a complex fault system, the Fall Canyon–Titus 
Canyon fault system (Plate 2).

Fall Canyon Fault

The Fall Canyon fault is a steeply east- dipping 
normal fault that extends northward from Titus 
Canyon, parallel to the range crest of the Grapevine 
Mountains (Plate 2). The Fall Canyon fault juxta-
poses upright Paleozoic strata in the upper limb of 
a large west- vergent fold in its footwall (the Titus 
Canyon anticline–Corkscrew Peak syncline, or 
TCA- CPS) against Cenozoic strata, including the 
Titus Canyon Formation and younger strata, in its 
hanging wall (Figs. 11 and 12). Although the lower 
members of the Titus Canyon Formation are not 
exposed along the Fall Canyon fault, in the west 
fork of Titus Canyon (Fig. 3), conglomeratic inter-
vals within the Variegated member both thicken 
and coarsen westward toward the Fall Canyon 
fault. No single conglomerate is thicker than ~40 m 
in our measured sections, but these conglomer-
ates merge into a single, >100- m- thick package 
toward the Fall Canyon fault. The thickening and 
coarsening of the conglomerates may represent 
sedimentological variability within the basin (e.g., 
of alluvial fans), but we interpret them as growth 
strata associated with the Fall Canyon fault, which 
would suggest that the Fall Canyon fault may have 
been an Eocene–Oligocene basin bounding fault to 
the Titus Canyon basin. The extensional nature of 
the basin is also evidenced by the unconformable 
nature of the contact between the Titus Canyon 
Formation and overlying strata, along with the 
wedge- shaped map- view pattern of Titus Canyon 
Formation exposures, both of which would be 
expected with deposition into asymmetric fault- 
bounded half grabens (Gawthorpe and Leeder, 
2000). These observations lead us to agree with 

previous interpretations of the Titus Canyon basin 
as an extensionally subsiding, asymmetric, and 
west- deepening basin (Saylor, 1991; Niemi, 2002; 
Gutenkunst, 2006; Fridrich and Thompson, 2011). 
Our extensional interpretation contrasts with other 
interpretations of the Titus Canyon basin as a tec-
tonically quiescent, low- relief alluvial floodplain 
(Miller et al., 2022).

Titus Canyon Fault

Where the trace of the Fall Canyon fault is 
exposed in Titus Canyon east of Leadfield (Fig. 3), 
it merges with the Titus Canyon fault, an enigmatic, 
nearly horizontal fault. The excellent exposure in 
Titus Canyon shows the Fall Canyon fault and Titus 
Canyon fault merging rather than crosscutting 
(Fridrich and Thompson, 2011). Additionally, the 
significant offset associated with the Fall Canyon 
fault does not continue into the footwall rocks of 
the Titus Canyon fault. The flat attitude of the Titus 
Canyon fault, and its exposure across the top of 
the southern Grapevine Mountains, originally led 
to the interpretation of this structure as a Mesozoic 
thrust fault (Reynolds, 1969). The recognition that 
this fault everywhere carries the depositional base 
of the Titus Canyon Formation, and that this fault 
is contiguous with the Fall Canyon fault, under-
scores the nature of this structure as a low- angle 
Eocene detachment fault. The Titus Canyon fault 
places upright lower Paleozoic strata and overly-
ing Titus Canyon Formation in its hanging wall on 
upper Neoproterozoic and lower Paleozoic strata 
of the overturned limb of the TCA- CPS (Fig. 12; 
Reynolds, 1969; Fall Canyon fault zone of Lutz et al., 
2021). The Titus Canyon fault has multiple struc-
tural levels that appear to localize along relatively 
weak shale intervals within the Cambrian Carr-
ara Formation and Neoproterozoic Wood Canyon 
Forma tion (Plate 2). The lower Paleozoic and upper 
Neoproterozoic strata are significantly structurally 
thinned (< 1 km thick) and form the floor of the Titus 
Canyon basin, on which the Basal breccia mem-
ber of the Titus Canyon Formation was deposited. 
A top- to- the- southeast sense of displacement on 
the Titus Canyon fault is inferred from both its 

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/19/1/258/5852414/ges02556.1.pdf
by Charles Watson
on 13 December 2023

http://geosphere.gsapubs.org


280Midttun et al. | Stratigraphy of the Eocene–Oligocene Titus Canyon FormationGEOSPHERE | Volume 19 | Number 1

Research Paper

continuity with the east- dipping Fall Canyon fault 
and a likely northwesterly source for the upright 
Paleozoic strata carried in the Titus Canyon fault 
hanging wall (Niemi, 2012).

Boundary Canyon Detachment

To the south, in the vicinity of Daylight Pass, all 
structures in the Grapevine Mountains (including 
the Titus Canyon fault and Titus Canyon anticline– 
Corkscrew Peak syncline) are truncated at the 
Boundary Canyon detachment (Fig. 11 and Plate 2), 
a top- to- the- northwest low- angle detachment fault 
that bounds the Funeral Mountains metamorphic 
core complex (Holm and Dokka, 1991; Hoisch and 
Simpson, 1993; Beyene, 2011; Fridrich and Thomp-
son, 2011; Lutz et al., 2021). The Boundary Canyon 

detachment separates amphibolite- grade Neo-
proterozoic sedimentary rocks in its footwall from 
zeolite- grade strata in its hanging wall (Hoisch and 
Simpson, 1993; Wright and Troxel, 1993; Mattinson 
et al., 2007; Verdel et al., 2011; Hoisch et al., 2014; 
Affinati et al., 2020). The metamorphic history of 
the footwall rocks exhumed by the Boundary Can-
yon detachment is complex (Hoisch and Simpson, 
1993; Applegate and Hodges, 1995; Mattinson et al., 
2007; Wells and Hoisch, 2008; Affinati et al., 2020), 
but the timing of metamorphic core complex devel-
opment is well constrained to the middle to late 
Miocene by a variety of low- temperature thermo-
chronometric studies (e.g., Holm and Dokka, 1991; 
Lutz et al., 2021).

Where the Boundary Canyon detachment 
truncates the Titus Canyon fault along the east-
ern margin of the northern Funeral Mountains 

(near Indian Butte, Fig. 3), exposures of the Titus 
Canyon Formation are incomplete and primarily 
consist of the Variegated member of the Titus Can-
yon Formation (Plate 2). Near the Boundary Canyon 
detachment, the base of the Titus Canyon Forma-
tion is commonly faulted and juxtaposed against 
upper Neoproterozoic siliciclastic strata in the foot-
wall of the detachment, recording disarticulation of 
the Titus Canyon Formation and associated Eocene 
structures during Miocene displacement on the 
Boundary Canyon detachment (Plate 2; Wright and 
Troxel, 1993; Gutenkunst, 2006).

Evidence for Miocene reactivation of the Eocene– 
Oligocene structures that bound the Titus Canyon 
basin is equivocal. Thick sequences of middle Mio-
cene strata and ignimbrites from the Southwest 
Nevada volcanic field are exposed to the east of the 
Fall Canyon fault but are conspicuously absent to 
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the west of this structure, throughout the western 
central Basin and Range (Niemi, 2012). Despite the 
thickness of these Miocene volcanic and sedimen-
tary units, there is no clear evidence of thickening 
or growth fault relationships between them and 
the Fall Canyon fault. Moreover, we observed no 
unambiguous exposures that would clarify the 
nature of the contact between the Miocene units 

and the Fall Canyon fault as being structural rather 
than, for example, a depositional contact along a 
buttress unconformity. Given a lack of conclu-
sive evidence for post- Oligocene activity on the 
Fall Canyon and Titus Canyon fault, we infer that 
the relationship observed between the Miocene 
ignimbrites and the Fall Canyon fault represents 
a buttress unconformity, but we acknowledge the 

challenge of preserving Oligocene structural relief 
into the middle Miocene.

Implications of Titus Canyon Basin Structures 
for Regional Palinspastic Reconstructions of 
Basin and Range Extension

Palinspastic restorations are key to understand-
ing the magnitude and mechanisms of large- scale 
intracontinental extension (e.g., Wernicke et al., 
1988; Snow and Wernicke, 2000; McQuarrie and 
Wernicke, 2005), and they form the basis for geo-
dynamic models constructed to understand the 
internal and external forces that drive lithospheric 
deformation (e.g., Bahadori and Holt, 2019). In the 
central Basin and Range, geologic markers that 
constrain such reconstructions fall into two broad 
categories: (1) late Paleozoic to Mesozoic contrac-
tional structures formed during convergence on 
the North American plate boundary (e.g., Burch-
fiel and Davis, 1975; Giallorenzo et al., 2018), and 
proximal sedimentary deposits of late Cenozoic age 
that have been tectonically dismembered by exten-
sion (e.g., Salyards and Shoemaker, 1987; Topping, 
1993; Niemi et al., 2001). The structural markers 
are commonly used to define the magnitude of 
Basin and Range extension but have limited util-
ity for understanding timing or rates of extension, 
while syn- extensional sedimentary deposits can 
provide compelling information on the timing of 
deformation but generally less precise constraints 
on extensional magnitudes.

The Titus Canyon Formation and bounding 
structures are thus of significant interest for refining 
palinspastic reconstructions because both closely 
pre- date the onset of large- magnitude extension 
in the Basin and Range. In this context, the struc-
tural relationship between the Fall Canyon–Titus 
Canyon fault system and the Titus Canyon anticline–
Corkscrew Peak syncline is of particular significance. 
The TCA- CPS is a west- vergent fold pair, a rare type 
of contractional structure in the Death Valley region, 
which is dominated by east- directed thrust faults 
(e.g., Snow and Wernicke, 1989). As such, the TCA- 
CPS has been correlated with west- vergent folds in 
other mountain ranges surrounding Death Valley 
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as a diagnostic structural marker (e.g., Wernicke et 
al., 1988; Snow and Wernicke, 1989), a correlation 
predicated on the assumption that the TCA- CPS, 
as well as the other west- vergent folds, are exten-
sionally disrupted fragments of a single, originally 
contiguous geologic structure.

The age of west- vergent folding in the Death 
Valley region is constrained only in the Cottonwood 
Mountains, where crosscutting dikes and growth 
strata bracket the timing of folding to Late Permian 
to early Triassic age (Snow et al., 1991; Stevens 
and Stone, 2005). Consequently, the question of 
whether all west- vergent folds throughout the 
Death Valley region are of this age, and thus cor-
relative, is debated (e.g., Serpa and Pavlis, 1996; 
Renik and Christie- Blick, 2013; Lutz et al., 2021). In 
particular, the TCA- CPS has been the subject of 
debate with respect to the timing of its formation, 
with similarities to structures in the Cottonwood 
Mountains supporting a Permo- Triassic age (Snow 
and Wernicke, 2000; Niemi, 2012). Alternatively, the 
close association of the TCA- CPS to the late Mio-
cene Boundary Canyon detachment has been used 
to argue for a model of syn- extensional folding syn-
chronous with unroofing of the Funeral Mountains 
metamorphic core complex (Reynolds, 1974; Lutz 
et al., 2021).

Age constraints on the Fall Canyon fault–Titus 
Canyon fault, and crosscutting relationships 
between that structure and the TCA- CPS, do not 
provide absolute age constraints on the timing of 
TCA- CPS folding, but do provide relative timing 
on the development of these structures. The nor-
mal fault emplacement of upright Paleozoic strata 
and Titus Canyon Formation onto overturned Neo-
proterozoic strata of the Corkscrew Peak syncline 
(Fig. 12) requires that the TCA- CPS was developed 
prior to displacement on the Fall Canyon–Titus Can-
yon fault. The coarsening and thickening of the 
Titus Canyon Formation into the Fall Canyon fault 
in western Titus Canyon therefore imply that the 
TCA- CPS formed prior to the Eocene. This age con-
straint for folding of the TCA- CPS does not resolve 
all outstanding questions of structural correlations 
between west- vergent folds in the Death Valley 
region but does support the inference that the 
TCA- CPS is a pre- Cenozoic contractional structure 

associated with late Paleozoic or Mesozoic short-
ening of the Cordilleran margin.

 ■ TECTONIC AND TOPOGRAPHIC 
IMPLICATIONS FOR THE EVOLUTION 
AND COLLAPSE OF THE SEVIER 
OROGENIC BELT

A variety of geodynamic mechanisms have 
been invoked as proximate causes for the onset of 
Eocene extension within the proto- Basin and Range, 
including flexural and isostatic dynamics ahead of 
the delaminating Farallon slab (e.g., Smith et al., 
2017; Cassel et al., 2018), changing plate boundary 
stresses (e.g., Atwater, 1970; Schellart et al., 2010), 
and gravitational collapse (Humphreys, 1995; 
Sonder and Jones, 1999). In northern Nevada, the 
close temporal association between Farallon slab 
removal and the onset of extension has been pre-
sumed to reflect a causal relationship between the 
two (e.g., Cassel et al., 2018). However, farther to 
the north, the earlier removal of the Farallon slab 
has been linked to an early Eocene phase of volca-
nism and extensional deformation that preceded 
a late Eocene phase of deformation, potentially 
related to a change in plate boundary stresses 
(e.g., Janecke, 1992). The southerly location of 
the Titus Canyon Basin may potentially record the 
opposite scenario, in which a late Eocene change 
in plate boundary stresses preceded the removal 
of the Farallon slab by 15 Ma, providing a unique 
and important constraint on the evolution of inter-
nal and external forces driving Basin and Range 
extension.

Stratigraphic Record of Crustal Extension 
along the Axis of the Sevier Orogenic Belt

In the central and northern Basin and Range, 
Late Cretaceous to Paleocene syn- convergent 
extension (e.g., Hodges and Walker, 1992; Wells et 
al., 2008; Druschke et al., 2009; Long et al., 2015) 
left a relatively sparse stratigraphic record in the 
hinterland of the Sevier orogen, primarily consist-
ing of the Sheep Pass Formation (ca. 70–43 Ma) 

in central Nevada (Fig. 13, Druschke et al., 2009, 
2011). Despite a sparse surficial record of syn- 
convergent extension, thermochronometric and 
isotopic data sets from several metamorphic core 
complexes record cooling during the late Creta-
ceous to early Cenozoic that may be attributable to 
early extensional exhumation, including in the Raft 
River–Albion metamorphic core complex (Wells et 
al., 2012), the Funeral Mountain metamorphic core 
complex (Applegate et al., 1992; Hoisch and Simp-
son, 1993; Applegate and Hodges, 1995), the Eureka 
Culmination (Long et al., 2015), and the Pequop 
Mountains (Camilleri, 1996). Syn- convergent exten-
sion has been attributed to collapse driven by 
gravitational potential energy gradients produced 
by a lithosphere over- thickened by Sevier deforma-
tion (e.g., Vandervoort and Schmitt, 1990; Hodges 
and Walker, 1992; DeCelles, 2004; Platt, 2007; Drus-
chke et al., 2009).

Compared to earlier deposition, the Eocene 
stratigraphic record of extensional tectonism is 
more widespread and better constrained tempo-
rally (Fig. 13). This stratigraphic record preserves a 
north- to- south sweep in the onset of Eocene basin 
deposition, with the earliest deposits preserved in 
the Challis volcanic field of southern Idaho, where a 
basal conglomerate records deposition prior to the 
eruption of overlying volcanic units that have been 
dated with 40Ar/39Ar at ca. 49.5 Ma (Fig. 13; Moye et 
al., 1988; Sanford, 2005). In northernmost Nevada, 
the Elko Formation (Elko Basin) and the Dead Horse 
Formation (Copper Basin) contain a large number 
of tuffs that have enabled robust 40Ar/39Ar geo-
chronology that indicates deposition spanned ca. 
46–38 Ma, with the exception of one earlier local 
pulse of deposition in the vicinity of Coal Mine Can-
yon at ca. 49 Ma (Rahl et al., 2002; Haynes, 2003; 
McGrew et al., 2007; Henry, 2008; Henry et al., 2015; 
Mulch et al., 2015; Lund Snee et al., 2016; Smith et 
al., 2017). The syn- convergent Sheep Pass Forma-
tion in central Nevada is overlain by Eocene strata, 
including the Stinking Springs Conglomerate and 
Kinsey Canyon Formation with depositional ages 
that range from ca. 37–35 Ma (Fig. 13; Druschke 
et al., 2009). Eocene deposition in the Sheep Pass 
Basin, in particular, overlaps with Redbed member 
deposition in the Titus Canyon basin.
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Each basin displays a broadly similar deposi-
tional pattern, with early deposition dominated 
by coarse basal deposits and fluvial strata that 
transition up section into lacustrine strata capped 
by volcanic or volcanic- rich units (Fig. 13). In the 
northern Basin and Range, the close temporal 
connection between clastic basin deposition and 
overlying volcanic deposition, combined with the 

southward sweep of basin initiation, has been taken 
to reflect subsidence and volcanism arising from 
the southward- propagating removal of the Farallon 
slab (e.g., Humphreys, 1995). In such a model, north 
to south delamination of the Farallon flat slab pro-
duced a south- directed, time- transgressive sweep 
of volcanism (Fig. 14; Humphreys, 1995; McQuarrie 
and Oskin, 2010), core complex exhumation (Fig. 14; 

e.g., MacCready and Snoke, 1997; Methner et al., 
2015; Lee et al., 2017), and hinterland basin depo-
sition (Fig. 14; Smith et al., 2017; Cassel et al., 2018; 
Lund Snee, 2020).

The southerly location of the Titus Canyon basin 
with respect to the time- transgressive removal 
of the Farallon slab, however, yields a markedly 
different pattern (Fig. 13). Eocene basin initiation 
and clastic deposition occurred in the Titus Can-
yon basin coeval with Eocene basin formation in 
northern Nevada, but the detaching Farallon slab, 
and associated volcanism, did not reach the central 
Basin and Range until the middle Miocene, coin-
cident with widespread ignimbrite production in 
the Southwest Nevada volcanic field (Sawyer et al., 
1994) and the exhumation of the Funeral Mountains 
metamorphic core complex (Holm and Dokka, 1991; 
Hoisch and Simpson, 1993; Lutz et al., 2021).

In the northern Basin and Range, Eocene hinter-
land basin development could reasonably represent 
a dynamic response to the southward removal 
of the Farallon slab (Smith et al., 2017; Cassel et 
al., 2018; Lund Snee, 2020), but the 15 m.y. gap 
between Eocene basin formation and volcanism 
and metamorphic core complex formation in the 
central Basin and Range would appear to be incon-
sistent with a singular driving force at the latitude of 
Titus Canyon. Throughout the Paleogene, ongoing 
subduction resulted in the fragmentation of the Far-
allon slab (e.g., Schellart et al., 2010). Between ca. 
48 and 30 Ma, the trench- parallel length of the Far-
allon slab decreased by 75% and the Farallon–North 
America convergence rate rapidly slowed (Fig. 13; 
Jurdy, 1984; Gordon and Jurdy, 1986; Schellart et 
al., 2010). From the Eocene to Miocene, the Far-
allon slab steepened or foundered, from north to 
south across the northern Basin and Range (Fig. 13; 
Humphreys, 1995; McQuarrie and Oskin, 2010). The 
slowdown in Farallon–North America plate con-
vergence rate was less time transgressive than 
Farallon detachment, consisting of a rapid transi-
tion from trench advance to trench retreat along 
the full length of the Farallon plate boundary at 
ca. 40 Ma (Fig. 13; Schellart et al., 2010).

In the northern Basin and Range, the transi-
tion from trench advance to trench retreat along 
the Farallon–North America plate boundary is 
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temporally indistinguishable from the passage of 
the detaching Farallon slab (Fig. 13). However, these 
two events are separated by ~25 m.y. at the latitude 
of the Titus Canyon basin. Extensional basin forma-
tion and deposition of the Titus Canyon Formation 
is approximately coeval with the transition from 
trench advance to trench retreat along the plate 
margin, while the subsequent onset of local volca-
nism and metamorphic core complex formation is 
contemporaneous with the removal of the Farallon 
slab at that latitude (Fig. 13). We infer that the com-
plex history of extensional tectonism, deposition, 
and basin formation in the central Basin and Range 
results from multiple discrete episodes of deforma-
tion. In the Eocene, extensional basin formation was 
driven by stress changes along the plate boundary, 

coupled with localized gravitational collapse of pos-
sibly over- thickened lithosphere (e.g., Vandervoort 
and Schmitt, 1990; Hodges and Walker, 1992; Platt, 
2007; Druschke et al., 2009; Wells et al., 2012; Baha-
dori et al., 2018). These early extensional basins 
were overprinted by middle Miocene volcanism and 
core complex formation that accompanied exten-
sion driven by lithospheric weakening and heating 
during removal of the Farallon slab (e.g., Armstrong 
and Ward, 1991; Axen et al., 1993; Humphreys et al., 
2003). Such a model is compatible with early clas-
tic basin formation and subsequent volcanism and 
core complex formation in the northern Basin and 
Range, but the temporal overlap between these two 
geodynamic processes precludes their effects from 
being assessed separately in that region.

Spatial Extent of an Early Eocene 
Nevadaplano

Thickened crust within the Sevier orogenic belt 
is hypothesized to have supported a high- elevation, 
low- relief orogenic plateau called the Nevadaplano 
(Ernst, 2009). The spatial extent and elevation of 
this plateau are the subjects of considerable debate 
(e.g., Chamberlain et al., 2012; Long, 2012; Lechler 
et al., 2013; Snell et al., 2014; Miller et al., 2022) and 
are of particular interest in relating the distribu-
tion and magnitude of Basin and Range extension 
to the pre- extensional distribution of topography 
and crustal thickness (e.g., Bahadori et al., 2018). 
Approaches that directly constrain pre- extensional 
topography of the Nevadaplano are limited by the 
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small number of deposits of appropriate age and 
composition for paleoelevation analysis, the ther-
mal resetting of paleoaltimetric proxies such as 
carbonate clumped isotopes (Lechler et al., 2013), 
and the relatively large elevation uncertainties 
associated with paleofloral data and stable isoto-
pic proxies (e.g., Chamberlain et al., 2012; Snell et 
al., 2014). The low spatial and temporal density of 
paleoelevation, paleotopographic, and paleocrustal 
thickness estimates has resulted in a number of 
competing models for the topographic profile of 
the Sevier orogenic belt (Cecil et al., 2010; Cassel 
et al., 2014; Bahadori and Holt, 2019). Among the 
most pronounced discrepancies in these models 
is the recognition of a paleotopographic divide, 
based on ignimbrite sheet distributions (Henry et 
al., 2012; Best et al., 2016), that lies ~150 km west 
(in pre- extensional coordinates) of the belt of core 
complexes and presumed greatest pre- extensional 
crustal thickness (Fig. 14; Bahadori and Holt, 2019).

The distribution of Eocene hinterland extensional 
basin deposits, including the Titus Canyon Formation, 
sheds some light on the potential paleotopography 
in the hinterland of the Sevier orogenic belt. All 
Eocene basins lie east of the paleotopographic divide 
and west of the inferred axis of thick crust produced 
by Sevier shortening (Fig. 14). In particular, the large 
areal extents of the lacustrine- dominated Elko For-
mation and the Sheep Pass Formation imply basin 
development across a region of relatively low- relief 
topography. An interpretation of low- relief paleoto-
pography in this region is supported by the general 
lack of structural relief across the inferred Neva-
daplano (Gans and Miller, 1983; Miller and Gans, 
1989; DeCelles and Coogan, 2006; Van Buer et al., 
2009; Konstantinou et al., 2012; Long, 2012, 2018), 
and the local relief on the base of ignimbrite sheets, 
as well as their long outflow distances and broad 
aprons (Henry et al., 2012). Together, these obser-
vations suggest the existence of a low- relief, and 
perhaps at times internally drained, portion of the 
Nevadaplano that can be extended along the belt of 
Eocene basins, from the Copper Basin in northern 
Nevada to the Titus Canyon basin in eastern Cali-
fornia (Fig. 14). The extent of large paleo- lakes and 
lacustrine basins has been invoked as a proxy for 
low- relief topography on elevated plateau surfaces 

(Zhenhan et al., 2008), and the presence of such 
basins along the axis of the Sevier orogenic belt in 
Eocene time should be considered in paleotopo-
graphic reconstructions of western U.S. topography 
at that time (e.g., Bahadori and Holt, 2019).

 ■ CONCLUSIONS

In this study, we redefine the internal stratigraphy 
of the Eocene–Oligocene Titus Canyon Formation 
and clarify its correlation to regionally similar units 
through a combination of detailed stratigraphic 
descriptions and geochronology. A combination 
of mammalian biostratigraphy, new detrital zir-
con U-Pb maximum depositional age constraints, 
and relocated 40Ar/39Ar ages indicate that the Titus 
Canyon basin spans ca. 40–30 Ma and may record 
the earliest hinterland sedimentation in the central 
Basin and Range following the Mesozoic Sevier 
orogeny. The stratigraphy and structural position 
of the Titus Canyon Formation in the hanging wall of 
the linked Fall Canyon and Titus Canyon faults sup-
port previous interpretations of the formation as an 
extensional basin deposit. A change in detrital zircon 
provenance from an entirely Mesozoic Sierran arc 
source to a dominantly Paleozoic and Neoprotero-
zoic miogeoclinal source may record progressive 
extensional unroofing of deeper miogeoclinal forma-
tions that contain greater concentrations of zircons, 
which along with the basin subsidence itself, sup-
ports continued extensional tectonism throughout 
the deposition of the formation. The phase of low- 
magnitude extension recorded by the Titus Canyon 
Formation predates large- magnitude exhumation of 
the nearby Funeral Mountains metamorphic core 
complex and suggests that extensional deformation 
in the central Basin and Range may have initiated 
because of changes in plate boundary forces and 
was later over- printed by deformation associated 
with removal of the Farallon slab.
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